Reaction System Support Structure



Plate2 The TIROS-N spacecraft, having a length of 3.71 m and a weight of 1421 kg. The four instruments of particular meteorological importance are shown in the numbered boxes. 1. Visible and infra-red detector - discerns clouds, land-sea boundaries, snow and ice extent and temperatures of clouds, earth's surface and sea surface. 2. Infra-red detector - permits calculation of temperatures profile from the surface to the 10-mb level, as well as the water vapour and ozone contents of the atmosphere in cloud-free areas. 3. Device for measuring temperatures in the stratosphere. 4. Device for measuring microwave radiation from the earth's surface which supplements unit 2 in cloudy areas (NOAA: National Oceanic and Atmospheric Administration).

Kreislauf Llvermeidung

Plate 3 The TIROS-N satellite system consisting of two spacecraft in polar orbit at 833 and 870 km, respectively. The orbital plane of the second satellite lags 90° longitude behind that of the first and the orbital plane of each processes eastward at about 1 ° longitude per day. Each satellite transmits data from a circular area of the earth's surface 6200 km in diameter. The satellites make 14.18 and 14.07 orbits of the earth per day, respectively, such that each point on the earth is sensed for 13 to 14 minutes at a time (NOAA).

Plate 4 Cumulus towers with powerful thunderstorms along the ITCZ over Zaire photographed in April 1983 from the space shuttle at an elevation of 280 km. The largest tower shows a double mushroom cap reaching to more than 15,240 m and the symmetrical form of the caps indicates a lack of pronounced airflow at high levels (courtesy of NASA).

Cumulonimbus Anvil

Plate 5 Massive dust plumes over the eastern North Atlantic on 26 February 2000 as viewed by the SeaWiFs sensor on board the NASA OrbView-2 satellite. Dust is transported from the western Sahara and coastal areas of Africa across the Canary Islands (Prospero 2001) (NASA photograph, courtesy of J.M. Prospero).

Cumulonimbus Anvil
Plate 6 Cumulonimbus cloud with anvil (courtesy of NOAA Photo Library, Historic NWS Collection, wea 02023).
Plate 7 View north along the eastern front of the Colorado Rockies, showing lee-wave clouds (NCAR photograph by Robert Bumpas).

Plate 8 Radiating or dendritic cellular (actiniform) cloud pattern. These complex convective systems some 150 to 250 km across were only discovered from satellite photographs. They usually occur in groups over areas of subsidence inversions, intensified by cold ocean currents (e.g. in low latitudes of the eastern Pacific) (NOAA).

Powierzchnia Wenus

Plate 9 DMSP visible image of the coastal area off New England at 14:33 hours GMT, 17 February 1979. A northerly airflow averaging 10ms-1, with surface air temperatures of about -I5°C, moves offshore where sea-surface temperatures increase to 9°C within 250 km of the coast. Convective cloud streets are visible, also ice in James Bay (upper left), and in the Gulf of St Lawrence (image courtesy of National Snow and Ice Data Center, University of Colorado, Boulder) (see Monthly Weather Review III, 1983, p. 245).

Plate 10 Snow crystals showing the variety of hexagonal plates (courtesy of NOAA Photo Library).

Plate II Thunderstorm approaching Ostersund, Sweden, during late afternoon on 23 June 1955. Ahead of the region of intense precipitation there are rings of cloud formed over the squall front (copyright F.H. Ludlam; originally published in Weather, vol. XV. no. 2, I960, p. 63).

Plate I2 Multiple cloud-to-cloud and cloud-to-ground lightning from time-lapse photography during a nocturnal thunderstorm (courtesy of National Severe Storms Laboratory, OAR/ERL. NOAA, NOAA Photo Library nss. 10012).

Plate 13 View looking south-southeast from about 9000 m (30,000 ft) along the Owen's Valley, California, showing a roll cloud developing in the lee of the Sierra Nevada mountains. The lee-wave crest is marked by the cloud layer, and the vertical turbulence is causing dust to rise high into the air (W = Mount Whitney, 4418 m (14,495 ft); I = Independence) (photograph by Robert F. Symons: courtesy R. S. Scorer).

Plate I4 Photograph by an astronaut from Gemini XII manned spacecraft from an elevation of some 180 km (112 miles) looking southeast over Egypt and the Red Sea. The bank of cirrus clouds is associated with strong upper winds, possibly concentrated as a jet stream (NASA photograph).

Plate 15 Infra-red photographs of the North Pacific, with the 200-mb jet stream inserted. Above: general zonal flow associated with a high zonal index, 12 March 1971: three major cloud systems (A, B, C) occur along the belt of zonal flow, and the largest east-west belt of cloud (D) to the south of Japan is also characteristic of accentuated zonal flow. Below: large-amplitude flow regime associated with a lower zonal index and a blocking ridge, 23 April 1971 (WorldMeteorological Organization 1973).

Plate 16 Infra-red photograph showing large vortices of cold water (light) upwelling in the warmer surface coastal waters (dark) off southern California. The colder offshore California current is clearly shown (NASA photograph).

Plate I7 View looking westward towards an approaching warm front, with lines of jet stream clouds extending from the northwest, from which trails of ice crystals are falling. In the middle levels are dark wave clouds formed in the lee of small hills by the southwesterly airflow, whereas the wind direction at the surface is more southerly - as indicated by the smoke from the chimney (photograph copyright by F.H. Ludlam: diagram by R.S. Scorer: both published in Weather, vol. 17, no. 8, 1962, pp. 266-7).

Plate 18 Satellite photograph of North America taken at 17:00 hours GMT on 12 February 1979 from a GOES weather satellite located some 35,800 km above the equator. Two depressions are located below an upper jet stream located between polar and subtropical high-pressure cells. The more westerly depression is forming in the lee of the Rocky Mountains; cold polar air streaming off New England is becoming cloudy over the warmer sea; weak easterly waves (dashed) have developed equatorward of the subtropical high-pressure cells over the Caribbean and Central America (courtesy of NOAA).

Plate 19 A polar low near Iceland, 14 January 1984, as seen on a visible band DMSP satellite image. This mesoscale low and the closed cellular cloud patterns to the south developed in a northerly airflow behind an occluded depression situated over the coast of Norway (courtesy of National Snow and Ice Data Center, University of Colorado, Boulder).

Continue reading here: Atmospheric instability cloud formation and precipitation processes

Was this article helpful?

0 0