Preface to the eighth edition

When the first edition of this book appeared in 1968, it was greeted as being 'remarkably up to date' (Meteorological Magazine). Since that time, several new editions have extended and sharpened its description and analysis of atmospheric processes and global climates. Indeed, succeeding prefaces provide a virtual commentary on recent advances in meteorology and climatology of relevance to students in these fields and to scholars in related disciplines. This revised and expanded eighth edition of Atmosphere, Weather and Climate will prove invaluable to all those studying the earth's atmosphere and world climate, whether from environmental, atmospheric and earth sciences, geography, ecology, agriculture, hydrology or related disciplinary perspectives.

Atmosphere, Weather and Climate provides a comprehensive introduction to weather processes and climatic conditions. Since the last edition in 1998, we have added an introductory overview of the historical development of the field and its major components. Following this there is an extended treatment of atmospheric composition and energy, stressing the heat budget of the earth and the causes of the greenhouse effect. Then we turn to the manifestations and circulation of atmospheric moisture, including atmospheric stability and precipitation patterns in space and time. A consideration of atmospheric and oceanic motion on small to large scales leads on to a new chapter on modelling of the atmospheric circulation and climate, that also presents weather forecasting on different time scales. This was prepared by my colleague Dr Tom Chase of CIRES and Geography at the University of Colorado, Boulder. This is followed by a discussion of the structure of air masses, the development of frontal and non-frontal cyclones and of mesoscale convective systems in mid-latitudes. The treatment of weather and climate in temperate latitudes begins with studies of Europe and America, extending to the conditions of their subtropical and high-latitude margins and includes the Mediterranean, Australasia, North Africa, the southern westerlies, and the sub-arctic and polar regions. Tropical weather and climate are also described through an analysis of the climatic mechanisms of monsoon Asia, Africa, Australia and Amazonia, together with the tropical margins of Africa and Australia and the effects of ocean movement and the El Nino-Southern Oscillation and teleconnections. Small-scale climates - including urban climates - are considered from the perspective of energy budgets. The final chapter stresses the structure and operation of the atmosphere-earth-ocean system and the causes of its climate changes. Since the previous edition appeared in 1998, the pace of research on the climate system and attention to global climate change has accelerated. A discussion of the various modelling strategies adopted for the prediction of climate change is undertaken, relating in particular to the IPCC 1990 to 2000 models. A consideration of other environmental impacts of climate change is also included.

The new information age and wide use of the World Wide Web has led to significant changes in presentation. Apart from the two new chapters 1 and 8, new features include: learning points and discussion topics for each chapter, and boxes presenting a special topic or a summary of pivotal advances in twentieth-century meteorology and climatology. Throughout the book, some eighty new or redrawn figures, revised tables and new plates are presented. Wherever possible, the criticisms and suggestions of colleagues and reviewers have been taken into account in preparing this latest edition.

This new edition benefited greatly from the ideas and work of my long-time friend and co-author Professor Richard J. Chorley, who sadly did not live to see its completion; he passed away on 12 May 2002. He had planned to play a diminishing role in the eighth edition following his retirement several years earlier, but nevertheless he remained active and fully involved through March 2002 and prepared much of the new Chapter 1. His knowledge, enthusiasm and inspiration will be sorely missed.

CIRES and Department of Geography, University of Colorado, Boulder

Was this article helpful?

0 0
Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Post a comment