Introduction

Weather and climate—two subjects that many people think they know a lot about. Humans have been wondering and complaining about the weather, bad weather in particular, since they first walked on the face of the Earth. Perhaps it was this very familiarity with weather and climate that prevented these areas of study from being considered part of mainstream science until the middle of the 20th century. This book traces the fascinating and often frustrating history of the transformation of the study of weather phenomena and climatic conditions into the scientific disciplines of meteorology and climatology.

First emerging as a bona fide science in the mid-19th century, meteorology rose—from weather-guessing art to barely reputable science to a computer-driven science bearing on some of the most important issues of the 20th century—as a result of a number of factors. They include the improvement of old instruments and the development of new ones; the creation of research and educational institutes for gathering data, exchanging ideas, and educating young scientists about the atmosphere; and the rise of the aviation industry, which demanded better information about atmospheric processes. In many ways, meteorology and climatology became increasingly scientific disciplines because of the needs of military forces during 20th-century wars.

In a science based on physics and mathematics, meteorologists experienced many more difficulties studying the atmosphere than did their physics colleagues who were studying electricity, magnetism, motion, and atomic properties. The physicists' research took place in the tightly controlled confines of a laboratory. Meteorologists did not have that luxury. With the vast, constantly changing atmosphere as laboratory, atmospheric scientists first had to develop instruments that would accurately measure temperature, air pressure, humidity, wind direction and speed, and the amount of fallen precipitation—and then figure out a method of lifting them into the air to measure these properties many thousands of feet above Earth's surface. Starting with kites and balloons, meteorologists of the early 20th century perfected ingenious methods for capturing these critical data.

Science, however, does not equal data collection. Science requires the analysis of data to determine what they might mean and how they fit together to describe observed phenomena in terms of formalized rules often expressed as mathematical equations. Sometimes scientists can use these data to determine why these phenomena occur. Other times they cannot. To gain scientific knowledge, people first need to learn the knowledge gained by their predecessors. They do so by receiving advanced education in colleges and universities. People also need to share and test new ideas. The establishment of research institutes and observatories, such as the Leipzig Geophysical Institute in Germany and the Bergen School of Meteorology in Norway, were important to data gathering, the development of theories about atmospheric processes, and the training of a cadre of young, gifted scientists who were drawn to the mysteries of weather and climate.

Scientific advancement also depends on patrons: individuals, philanthropic foundations, businesses, or government agencies that provide funding for equipment and training. Governments had long been consumers of weather and climate information because the safety of their citizens and adequate food supplies depended on good weather information. But a new consumer appeared in the early 20th century that would provide a tremendous boost to meteorology's prospects for disciplinary advancement: the aeronautics community. Pilots, in their flimsy canvas and wood flying machines, needed information about the atmosphere to take off, fly, and land safely. A special relationship developed between meteorologists and aviators: Meteorologists provided forecasts and the aviators provided information about the atmosphere that helped to improve the forecasts.

Although aviation needs alone might have been sufficient to launch meteorology into a respected scientific position, wars created special circumstances that moved meteorology from forecasting art to physical science, and climatology from being a branch of geography to a science in its own right. During wars, combatant countries need food for soldiers and citizens left in what are often difficult circumstances. Meteorologists were called upon to examine atmospheric conditions that could aid the harvest. Increasingly mechanized war-fighting techniques demanded specialized knowledge of weather and climate. These demands drew new people into these fields—people who looked at the atmosphere more mathematically and physically than people had in previous centuries. These new meteorologists and climatologists used tools that had developed from wartime technologies such as radar, computers, rockets, and later satellites to advance their knowledge of atmospheric processes and of their relationship to the Earth. The use of these calculating and remote sensing tools expanded rapidly in the last half of the 20th century as human impact on climate became more apparent.

By the end of the 20th century, weather had moved from the back page of the newspaper, where one could find the daily forecast, to the front page, as news of catastrophic storms such as Hurricane Andrew,

Introduction xxi widespread drought in Africa and South Asia, and flooding in major river valleys caused death and destruction. Melting glaciers, rising sea levels, water shortages, and temperature extremes added compelling evidence that Earth's temperature was rising. No longer just a topic of casual conversation, by the end of the century changes in weather and climate conditions had become issues of international importance. Scientists, diplomats, and others involved in science policy were engaged in United Nations-sponsored gatherings whose mission it was to analyze the current state of the Earth-atmosphere system and determine its future.

This book discusses how scientists radically changed their ideas about weather and climate during the course of the 20th century. No longer content with determining tomorrow's weather, atmospheric scientists seek answers about current and future climate conditions by peering into the past to uncover information about Earth's atmosphere tens of thousands of years ago. Issues of weather and climate have never been more important to the world's population than they are today, because they have the potential to affect the way people live significantly. The middle and high school students of today will inherit an Earth-atmosphere system that behaves differently than the one experienced by their parents and grandparents. A few of those students may wish to take up the challenge of solving scientific problems related to weather and climate or help to set governmental policies related to fossil fuel emissions, water distribution, posthurricane disaster planning, or air quality standards. Everyone has a stake in Earth's atmosphere. It is important for all citizens to understand what scientists know and how they know it. The way this knowledge is used will affect everyone in the 21st century and beyond.

Solar Power Sensation V2

Solar Power Sensation V2

This is a product all about solar power. Within this product you will get 24 videos, 5 guides, reviews and much more. This product is great for affiliate marketers who is trying to market products all about alternative energy.

Get My Free Ebook


Post a comment