The climatechange motivation

Free Power Secrets

Making Your Own Fuel

Get Instant Access

The climate-change motivation is argued in three steps: one: human fossil-fuel burning causes carbon dioxide concentrations to rise; two: carbon dioxide is a greenhouse gas; three: increasing the greenhouse effect increases average global temperatures (and has many other effects).

340

Figure 1.4. Carbon dioxide (CO2) concentrations (in parts per million) for the last 1100 years, measured from air trapped in ice cores (up to 1977) and directly in Hawaii (from 1958 onwards).

I think something new may have happened between 1800 AD and 2000 AD. I've marked the year 1769, in which James Watt patented his steam engine. (The first practical steam engine was invented 70 years earlier in 1698, but Watt's was much more efficient.)

1600 1700 1800 1900 2000

Figure 1.4. Carbon dioxide (CO2) concentrations (in parts per million) for the last 1100 years, measured from air trapped in ice cores (up to 1977) and directly in Hawaii (from 1958 onwards).

I think something new may have happened between 1800 AD and 2000 AD. I've marked the year 1769, in which James Watt patented his steam engine. (The first practical steam engine was invented 70 years earlier in 1698, but Watt's was much more efficient.)

1600 1700 1800 1900 2000

1000 1200 1400 1600 1800 2000

We start with the fact that carbon dioxide concentrations are rising. Figure 1.4 shows measurements of the CO2 concentration in the air from the year 1000 AD to the present. Some "sceptics" have asserted that the recent increase in CO2 concentration is a natural phenomenon. Does "sceptic" mean "a person who has not even glanced at the data"? Don't you think, just possibly, something may have happened between 1800 AD and 2000 AD? Something that was not part of the natural processes present in the preceding thousand years?

Something did happen, and it was called the Industrial Revolution. I've marked on the graph the year 1769, in which James Watt patented his steam engine. While the first practical steam engine was invented in 1698, Watt's more efficient steam engine really got the Industrial Revolution going. One of the steam engine's main applications was the pumping of water out of coal mines. Figure 1.5 shows what happened to British coal production from 1769 onwards. The figure displays coal production in units of billions of tons of CO2 released when the coal was burned. In 1800, coal was used to make iron, to make ships, to heat buildings, to power locomotives and other machinery, and of course to power the pumps that enabled still more coal to be scraped up from inside the hills of England and Wales. Britain was terribly well endowed with coal: when the Revolution started, the amount of carbon sitting in coal under Britain was roughly the same as the amount sitting in oil under Saudi Arabia.

In the 30 years from 1769 to 1800, Britain's annual coal production doubled. After another 30 years (1830), it had doubled again. The next doubling of production-rate happened within 20 years (1850), and another ra 0)

T3 O

1600

1700

1800

1900

Figure 1.5. The history of UK coal production and world coal production from 1600 to 1910. Production rates are shown in billions of tons of CO2 - an incomprehensible unit, yes, but don't worry: we'll personalize it shortly.

doubling within 20 years of that (1870). This coal allowed Britain to turn the globe pink. The prosperity that came to England and Wales was reflected in a century of unprecedented population growth:

1600 1700 1800 1900 1700 1800 1900 2000

Eventually other countries got in on the act too as the Revolution spread. Figure 1.6 shows British coal production and world coal production on the same scale as figure 1.5, sliding the window of history 50 years later. British coal production peaked in 1910, but meanwhile world coal production continued to double every 20 years. It's difficult to show the history of coal production on a single graph. To show what happened in the next 50 years on the same scale, the book would need to be one metre tall! To cope with this difficulty, we can either scale down the vertical axis:

or we can squish the vertical axis in a non-uniform way, so that small quantities and large quantities can be seen at the same time on a single graph. A good way to squish the axis is called a logarithmic scale, and that's what I've used in the bottom two graphs of figure 1.7 (p9). On a logarithmic scale, all ten-fold increases (from 1 to 10, from 10 to 100, from 100 to 1000) are represented by equal distances on the page. On a logarithmic scale, a quantity that grows at a constant percentage per year (which is called "exponential growth") looks like a straight line. Logarithmic graphs are great

Figure 1.6. What happened next. The history of UK coal production and world coal production from 1650 to 1960, on the same scale as figure 1.5.

for understanding growth. Whereas the ordinary graphs in the figures on pages 6 and 7 convey the messages that British and world coal production grew remarkably, and that British and world population grew remarkably, the relative growth rates are not evident in these ordinary graphs. The logarithmic graphs allow us to compare growth rates. Looking at the slopes of the population curves, for example, we can see that the world population's growth rate in the last 50 years was a little bigger than the growth rate of England and Wales in 1800.

From 1769 to 2006, world annual coal production increased 800-fold. Coal production is still increasing today. Other fossil fuels are being extracted too - the middle graph of figure 1.7 shows oil production for example - but in terms of CO2 emissions, coal is still king.

The burning of fossil fuels is the principal reason why CO2 concentrations have gone up. This is a fact, but, hang on: I hear a persistent buzzing noise coming from a bunch of climate-change inactivists. What are they saying? Here's Dominic Lawson, a columnist from the Independent:

"The burning of fossil fuels sends about seven gigatons of CO2 per year into the atmosphere, which sounds like a lot. Yet the biosphere and the oceans send about 1900 gigatons and 36 000 gigatons of CO2 per year into the atmosphere - . . . one reason why some of us are sceptical about the emphasis put on the role of human fuel-burning in the greenhouse gas effect. Reducing man-made CO2 emissions is megalomania, exaggerating man's significance. Politicians can't change the weather."

Now I have a lot of time for scepticism, and not everything that sceptics say is a crock of manure - but irresponsible journalism like Dominic Lawson's deserves a good flushing.

The first problem with Lawson's offering is that all three numbers that he mentions (seven, 1900, and 36000) are wrong! The correct numbers are 26, 440, and 330. Leaving these errors to one side, let's address Lawson's main point, the relative smallness of man-made emissions.

Yes, natural flows of CO2 are larger than the additional flow we switched on 200 years ago when we started burning fossil fuels in earnest. But it is terribly misleading to quantify only the large natural flows into the atmosphere, failing to mention the almost exactly equal flows out of the atmosphere back into the biosphere and the oceans. The point is that these natural flows in and out of the atmosphere have been almost exactly in balance for millenia. So it's not relevant at all that these natural flows are larger than human emissions. The natural flows cancelled themselves out. So the natural flows, large though they were, left the concentration of CO2 in the atmosphere and ocean constant, over the last few thousand years. Burning fossil fuels, in contrast, creates a new flow of carbon that, though small, is not cancelled. Here's a simple analogy, set in the passport-control arrivals area of an airport. One thousand passengers arrive per hour, and

1769

1200 1400 1600 1800 2000

•World total

World oil ^ Saudi oil

1769

1000

World population (millions)

100

UK ships (kt)

m

10

UK pig iron (kt/y)

:

England+Wales p

opulation (millions)

1000

1200

1400

1600

1800

2000

Figure 1.7. The upper graph shows carbon dioxide (CO2) concentrations (in parts per million) for the last 1100 years - the same data that was shown in figure 1.4.

Here's a portrait of James Watt and his 1769 steam engine.

Figure 1.7. The upper graph shows carbon dioxide (CO2) concentrations (in parts per million) for the last 1100 years - the same data that was shown in figure 1.4.

The middle graph shows (on a logarithmic scale) the history of UK coal production, Saudi oil production, world coal production, world oil production, and (by the top right point) the total of all greenhouse gas emissions in the year 2000. All production rates are expressed in units of the associated CO2 emissions.

The bottom graph shows (on a logarithmic scale) some consequences of the Industrial Revolution: sharp increases in the population of England, and, in due course, the world; and remarkable growth in British pig-iron production (in thousand tons per year); and growth in the tonnage of British ships (in thousand tons).

In contrast to the ordinary graphs on the previous pages, the logarithmic scale allows us to show both the population of England and the population of the World on a single diagram, and to see interesting features in both.

1000

1200

1400

1600

1800

2000

there are exactly enough clockwork officials to process one thousand passengers per hour. There's a modest queue, but because of the match of arrival rate to service rate, the queue isn't getting any longer. Now imagine that owing to fog an extra stream of flights is diverted here from a smaller airport. This stream adds an extra 50 passengers per hour to the arrivals lobby - a small addition compared to the original arrival rate of one thousand per hour. Initially at least, the authorities don't increase the number of officials, and the officials carry on processing just one thousand passengers per hour. So what happens? Slowly but surely, the queue grows. Burning fossil fuels is undeniably increasing the CO2 concentration in the atmosphere and in the surface oceans. No climate scientist disputes this fact. When it comes to CO2 concentrations, man is significant.

OK. Fossil fuel burning increases CO2 concentrations significantly. But does it matter? "Carbon is nature!", the oilspinners remind us, "Carbon is life!" If CO2 had no harmful effects, then indeed carbon emissions would not matter. However, carbon dioxide is a greenhouse gas. Not the strongest greenhouse gas, but a significant one nonetheless. Put more of it in the atmosphere, and it does what greenhouse gases do: it absorbs infrared radiation (heat) heading out from the earth and reemits it in a random direction; the effect of this random redirection of the atmospheric heat traffic is to impede the flow of heat from the planet, just like a quilt. So carbon dioxide has a warming effect. This fact is based not on complex historical records of global temperatures but on the simple physical properties of CO2 molecules. Greenhouse gases are a quilt, and CO2 is one layer of the quilt.

So, if humanity succeeds in doubling or tripling CO2 concentrations (which is where we are certainly heading, under business as usual), what happens? Here, there is a lot of uncertainty. Climate science is difficult. The climate is a complex, twitchy beast, and exactly how much warming CO2-doubling would produce is uncertain. The consensus of the best climate models seems to be that doubling the CO2 concentration would have roughly the same effect as increasing the intensity of the sun by 2%, and would bump up the global mean temperature by something like 3 °C. This would be what historians call a Bad Thing. I won't recite the whole litany of probable drastic effects, as I am sure you've heard it before. The litany begins "the Greenland icecap would gradually melt, and, over a period of a few 100 years, sea-level would rise by about 7 metres." The brunt of the litany falls on future generations. Such temperatures have not been seen on earth for at least 100 000 years, and it's conceivable that the ecosystem would be so significantly altered that the earth would stop supplying some of the goods and services that we currently take for granted.

Climate modelling is difficult and is dogged by uncertainties. But uncertainty about exactly how the climate will respond to extra greenhouse gases is no justification for inaction. If you were riding a fast-moving motorcycle in fog near a cliff-edge, and you didn't have a good map of the cliff, would the lack of a map justify not slowing the bike down?

So, who should slow the bike down? Who should clean up carbon emissions? Who is responsible for climate change? This is an ethical question, of course, not a scientific one, but ethical discussions must be founded on facts. Let's now explore the facts about greenhouse gas emissions. First, a word about the units in which they are measured. Greenhouse gases include carbon dioxide, methane, and nitrous oxide; each gas has different physical properties; it's conventional to express all gas emissions in "equivalent amounts of carbon dioxide," where "equivalent" means "having the same warming effect over a period of 100 years." One ton of carbon-dioxide-equivalent may be abbreviated as "1tCO2e," and one billion tons (one thousand million tons) as "1GtCO2e" (one gigaton). In this book 11 means one metric ton (1000 kg). I'm not going to distinguish imperial tons, because they differ by less than 10% from the metric ton or tonne.

In the year 2000, the world's greenhouse gas emissions were about 34 billion tons of CO2-equivalent per year. An incomprehensible number. But we can render it more comprehensible and more personal by dividing by the number of people on the planet, 6 billion, so as to obtain the greenhouse-gas pollution per person, which is about 51/2 tons CO2e per year per person. We can thus represent the world emissions by a rectangle whose width is the population (6 billion) and whose height is the per-capita emissions.

World greenhouse gas emissions: 34 GtCÜ2e/y

population (billions)

Now, all people are created equal, but we don't all emit 51/2 tons of CO2 per year. We can break down the emissions of the year 2000, showing how the 34-billion-ton rectangle is shared between the regions of the world:

North America

5 GtCO2e/y

population (billions)

This picture, which is on the same scale as the previous one, divides the world into eight regions. Each rectangle's area represents the greenhouse gas emissions of one region. The width of the rectangle is the population of the region, and the height is the average per-capita emissions in that region.

In the year 2000, Europe's per-capita greenhouse gas emissions were twice the world average; and North America's were four times the world average.

We can continue subdividing, splitting each of the regions into countries. This is where it gets really interesting:

Qatar, United Arab Emirates o u

Qatar, United Arab Emirates

5 GtCO2e/y

Vtr io

population (billions)

The major countries with the biggest per-capita emissions are Australia, the USA, and Canada. European countries, Japan, and South Africa are notable runners up. Among European countries, the United Kingdom is resolutely average. What about China, that naughty "out of control" country? Yes, the area of China's rectangle is about the same as the USA's, but the fact is that their per-capita emissions are below the world average. India's per-capita emissions are less than half the world average. Moreover, it's worth bearing in mind that much of the industrial emissions of China and India are associated with the manufacture of stuff for rich countries.

So, assuming that "something needs to be done" to reduce greenhouse gas emissions, who has a special responsibility to do something? As I said, that's an ethical question. But I find it hard to imagine any system of ethics that denies that the responsibility falls especially on the countries to the left hand side of this diagram - the countries whose emissions are two, three, or four times the world average. Countries that are most able to pay. Countries like Britain and the USA, for example.

Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment