How much do renewables fluctuate

Energy2green Wind And Solar Power System

Wind Energy DIY Guide

Get Instant Access

However much we love renewables, we must not kid ourselves about the fact that wind does fluctuate.

Critics of wind power say: "Wind power is intermittent and unpredictable, so it can make no contribution to security of supply; if we create lots of wind power, we'll have to maintain lots of fossil-fuel power plant to replace the wind when it drops." Headlines such as "Loss of wind causes Texas power grid emergency" reinforce this view. Supporters of wind energy play down this problem: "Don't worry - individual wind farms may be intermittent, but taken together, the sum of all wind farms in different locations is much less intermittent."

Let's look at real data and try to figure out a balanced viewpoint. Figure 26.2 shows the summed output of the wind fleet of the Republic of Ireland from April 2006 to April 2007. Clearly wind is intermittent, even if we add up lots of turbines covering a whole country. The UK is a bit larger than Ireland, but the same problem holds there too. Between October 2006 and February 2007 there were 17 days when the output from Britain's 1632 windmills was less than 10% of their capacity. During that period there were five days when output was less than 5% and one day when it was






~o n








Let's quantify the fluctuations in country-wide wind power. The two issues are short-term changes, and long-term lulls. Let's find the fastest short-term change in a month of Irish wind data. On 11th February 2007, the Irish wind power fell steadily from 415 MW at midnight to 79 MW at 4am. That's a slew rate of 84 MW per hour for a country-wide fleet of capacity 745 MW. (By slew rate I mean the rate at which the delivered power fell or rose - the slope of the graph on 11th February.) OK: if we scale British wind power up to a capacity of 33 GW (so that it delivers 10 GW on average), we can expect to have occasional slew rates of

33 000 MW 745 MW

3700 MW/h, assuming Britain is like Ireland. So we need to be able to either power up replacements for wind at a rate of 3.7GW per hour - that's 4 nuclear power stations going from no power to full power every hour, say - or we need to be able to suddenly turn down our demand at a rate of 3.7 GW per hour.

Could these windy demands be met? In answering this question we'll need to talk more about "gigawatts." Gigawatts are big country-sized units of power. They are to a country what a kilowatt-hour-per-day is to a person: a nice convenient unit. The UK's average electricity consumption is about 40 GW. We can relate this national number to personal consumption: 1 kWh per day per person is equivalent to 2.5 GW nationally. So if every person uses 16 kWh per day of electricity, then national consumption is 40 GW.

Is a national slew-rate of 4 GW per hour completely outside human experience? No. Every morning, as figure 26.3 shows, British demand climbs by about 13 GW between 6.30am and 8.30am. That's a slew rate of 6.5 GWper hour. So our power engineers already cope, every day, with slew rates bigger than 4GW per hour on the national grid. An extra occasional slew of 4 GW per hour induced by sudden wind variations is no reasonable cause for ditching the idea of country-sized wind farms. It's a problem












Figure 26.3. Electricity demand in Great Britain during two winter weeks of 2006. The left and right scales show the demand in national units (GW) and personal units (kWh/d per person) respectively. These are the same data as in figure 26.1.

just like problems that engineers have already solved. We simply need to figure out how to match ever-changing supply and demand in a grid with no fossil fuels. I'm not saying that the wind-slew problem is already solved - just that it is a problem of the same size as other problems that have been solved.

OK, before we start looking for solutions, we need to quantify wind's other problem: long-term lulls. At the start of February 2007, Ireland had a country-wide lull that lasted five days. This was not an unusual event, as you can see in figure 26.2. Lulls lasting two or three days happen several times a year.

There are two ways to get through lulls. Either we can store up energy somewhere before the lull, or we need to have a way of reducing demand during the entire lull. (Or a mix of the two.) If we have 33 GW of wind turbines delivering an average power of 10 GW then the amount of energy we must either store up in advance or do without during a five-day lull is

(The gigawatt-hour (GWh) is the cuddly energy unit for nations. Britain's electricity consumption is roughly 1000 GWh per day.)

To personalize this quantity, an energy store of 1200 GWh for the nation is equivalent to an energy store of 20 kWh per person. Such an energy store would allow the nation to go without 10 GW of electricity for 5 days; or equivalently, every individual to go without 4 kWh per day of electricity for 5 days.

Was this article helpful?

0 0
Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Post a comment