The description of the operation of a fuel cell above is a simplification because it omits one key feature of the reaction between hydrogen and oxygen. Although hydrogen atoms and oxygen atoms will react spontaneously to form water, both hydrogen and oxygen are found (at room temperature) in the molecular forms H2 and O2. These will not react spontaneously and the hydrogen and oxygen molecules must be split before the reaction will proceed.

One method of splitting the molecules is to raise their temperature. Thus a flame will split sufficient of the molecules to start the reaction which then generates enough heat spontaneously to keep the reaction going. Some fuel cell designs use high temperatures too.

The alternative is to use a catalyst. A metal such as platinum will promote the splitting of both hydrogen and oxygen molecules at low temperatures and the resulting atoms will then react in a fuel cell. However platinum is very expensive. This has a significant effect on the cost of low-temperature fuel cells.

Was this article helpful?

0 0
Enneagram Essentials

Enneagram Essentials

Tap into your inner power today. Discover The Untold Secrets Used By Experts To Tap Into The Power Of Your Inner Personality Help You Unleash Your Full Potential. Finally You Can Fully Equip Yourself With These “Must Have” Personality Finding Tools For Creating Your Ideal Lifestyle.

Get My Free Ebook

Post a comment