Applications

From single-home units to municipal power stations supplying heat and power to a city, from paper mills burning their waste to provide steam and heat to large chemical plants installing gas-turbine-based CHP facilities; CHP installations are as different as their applications are varied.

Ideally the heat and electricity from a CHP plant will be supplied to the same users. A homeowner might install a tiny fuel-cell-based power generation unit to replace the household boiler. The new unit will still supply household heating but will provide electricity too, with excess power perhaps being sold to the local grid.

On a larger scale a reciprocating engine burning natural gas could be used to supply both electricity and heat to an office building or a large block of apartments. And at the top end of the capacity scale, a municipal power plant based on a coal-fired boiler or a gas turbine can provide electricity for a city and heat for that city's district heating system. In all these cases the same users take both heat and power.

Similar opportunities exist in industry. Many processes require a source of heat and all industrial plants need electricity. Often the two can be combined to good economic effect, once the benefits are recognised. So where, in the past, a paper manufacturer would have installed a boiler to supply heat while buying power from the grid, now the same manufacturer is more likely to install a CHP plant.

Such instances represent the ideal but a good match of heat and power demand is not always possible. Sometimes electricity is required but no heat; and sometimes large quantities of heat or steam are needed but no electricity. With creative thinking CHP can be adapted to these situations too. For example a company that needs considerable quantities of steam but little electricity might built a gas turbine CHP plant designed to produce the quantity of heat it required, treating the electricity also produced as a by-product to be sold to the local grid.

Domestic heat consumption remains the challenge. Where district heating networks exist, a good balance between domestic heat and electricity demand is possible. But where these do not exist the only solution is either power stations meeting the electricity demand only, or domestic CHP systems. Finland offers one of the best examples with 25% of its electricity generated in CHP plants. In the USA in 2002 only 3.5% of power came from CHP plants.5 Industrial CHP represented around 90% of the CHP capacity.

Solar Stirling Engine Basics Explained

Solar Stirling Engine Basics Explained

The solar Stirling engine is progressively becoming a viable alternative to solar panels for its higher efficiency. Stirling engines might be the best way to harvest the power provided by the sun. This is an easy-to-understand explanation of how Stirling engines work, the different types, and why they are more efficient than steam engines.

Get My Free Ebook


Post a comment