Understanding Hazards and Disasters

Survival MD

Survival MD Ebook

Get Instant Access

The driving force, or trigger, of disaster is the natural agent. In this context natural disasters are distinguished—earthquakes, floods, hurricanes, landslides, volcanic eruptions, and so on—from technological ones (toxic spills, transportation accidents, explosions in industrial plants, etc.) and social disasters (riots, acts of terrorism, crowd crushes, etc.). Experts on natural disaster tend to confine the definition to extreme geophysical phenomena and not include disease epidemics and the corresponding afflictions in animals (epizootics) and plants (epiphytotics), although phenomena such as locust infestations are sometimes considered. Epidemics are excluded mainly in order to narrow the field to manageable levels, rather than as the result of any theoretical justification. Indeed, students of disaster increasingly prefer not to distinguish between the three categories, which overlap considerably in terms of their effects, if not their generating mechanisms.

Hazard, the catalyst for natural disaster, is subject to rules of magnitude and frequency. Generally, small events tend to be relatively frequent and large ones infrequent. In this context, considerable problems arise in preparing for large volcanic eruptions, as the timescale on which they may occur (e.g., once every 10,000 years) can be very different from that of human organization (months and years). In their more benign, everyday forms, many natural hazards can be considered as resources. Water, for instance, is a life-sustaining resource unless it comes in excessively large or small quantities, giving rise to flood or drought, respectively.

Lava flow from an eruption of Mount Etna, Sicily, destroys all trees and plants in its path. (©Vittoriano Rastelli/Corbis. Reproduced by permission.)

epidemic rapid spread of disease throughout a population, or a disease that spreads in this manner

The greatest known natural disaster occurred some 65 million years ago when a mountain-sized comet or asteroid slammed into the earth near what is now Mexico's Yucatan peninsula. Scientists are boring a one-mile deep hole into the Chicxulub crater to learn more about the catastrophic event. By 2002, they had reached the top of the breccia layer at 2,800 feet down, bringing up a core of smashed rock-rubble. The devastation caused by the collision so drastically disrupted the earth's ecology that it brought about the extinction of dinosaurs and opened the way for the age of mammals.

archetype original or ideal example or model desertification transition of arable land to desert disaster cycle phases in the public response to a disaster: preparedness, disaster, response, recovery, and mitigation of effects complex emergency a humanitarian crisis in which there is a breakdown of political authority

The variation of flood hazards from very abrupt flash floods to much more slowly rising inundations, caused, for instance, when rivers swell from the gradual melting of snow, illustrates that hazards can strike along a continuum, from instantaneous impact to the gradual or long drawn-out effects of the so-called creeping disasters. The archetypal sudden-impact disaster is the earthquake, which usually strikes without warning and causes its worst effects within a minute or two of inception. At the other end of the continuum, one might regard accelerated soil erosion and desertification as creeping disasters, which may take years or centuries to reach catastrophic levels.

Magnitude alone does not govern the hazardousness of an extreme natural phenomenon. Consider, for example, the Sherman landslide that occurred in central Alaska in 1964. About 29 million cubic meters of rock debris traveled more than five kilometers at an estimated maximum speed of 180 kilometers per hour. However, as the event took place in an uninhabited area and had no real human consequences, it was a mere geological curiosity, not a disaster. In contrast, the landslide of October 21, 1966, at Aberfan, South Wales, involved one-hundredth as much debris traveling one-twelfth of the distance at one-twentieth of the speed, but it demolished two schools and an area of housing, resulting in 144 deaths, 116 of them schoolchildren. It was thus a very significant disaster. This illustrates that human vulnerability is a fundamental determinant of disaster potential.

Natural catastrophe has often been studied using as a basic model the disaster cycle, which emphasizes the common repetitiveness of disasters. Five phases are distinguished: (1) mitigation, a period of inactivity in which there is time to reduce the risks of disaster; (2) preparation, in which hazard monitoring and forecasts show the need to prepare for an impending event; (3) impact and emergency response, the short-term aftermath in which basic needs such as food, shelter, and public safety must be met; (4) restoration and recovery, in which basic services are restored; and (5) reconstruction, in which the damage is repaired, perhaps over an extended period of time, a decade or more if the catastrophe was significant enough. Each phase has its own set of requirements and, in a well-organized society, programmed responses.

Was this article helpful?

0 0
Survival Treasure

Survival Treasure

This is a collection of 3 guides all about survival. Within this collection you find the following titles: Outdoor Survival Skills, Survival Basics and The Wilderness Survival Guide.

Get My Free Ebook


Post a comment