Energy from Nuclear Fission Reactions

Inside the nuclear reactor, the released energy comes from the fission of 235U atoms (Fig. 8.16). When a 235U nucleus is struck by a slow neutron, it splits, releasing two smaller atoms and two or three neutrons in a process called "fission". The two new atoms may themselves undergo further radioactive decay, releasing beta or gamma radiation to achieve stability. The energy released by the fission is a result from the fact that the fission products and emitted neutrons, weigh together less than the original 235U atom. Following Einstein's famous equation, e = mc2, the difference in weight is converted into energy. In fact, a tremendous amount of energy, as 1 kg of pure 235U can generate over 2 million times more energy than 1 kg of coal! (Table 8.2). Because each fission event liberates two or three neutrons able to split other 235U atoms, themselves releasing two or three neutrons and so on, a rapidly multiplying sequence of fission events, known as a nuclear chain reaction, can occur and emit increasing quantities of neutron neutron

Fissile nucleus Uranium 235 or

Plutonium 239

Fission products

Fissile nucleus Uranium 235 or

Plutonium 239

Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment