No Significant Risk

Water Freedom System

Survive Global Water Shortages

Get Instant Access

RISK OF MALARIA TRANSMISSION will have risen in many pafr^of the 1, world by 2020 (relative to the average risk in the years 1961 to 1990), according ^ to projections assuming a temperature increase of about two degrees Fahrenheit. The analysis was based solely on temperature threshold and did not assess other factors that could influence malaria's spread.

RISK OF MALARIA TRANSMISSION will have risen in many pafr^of the 1, world by 2020 (relative to the average risk in the years 1961 to 1990), according ^ to projections assuming a temperature increase of about two degrees Fahrenheit. The analysis was based solely on temperature threshold and did not assess other factors that could influence malaria's spread.

evaporation), and it holds more moisture than a cool one. When the extra water condenses, it more frequently drops from the sky as larger downpours. While the oceans are being heated, so is the land, which can become highly parched in dry areas. Parching enlarges the pressure gradients that cause winds to develop, leading to turbulent winds, tornadoes and other powerful storms. In addition, the altered pressure and temperature gradients that accompany global warming can shift the distribution of when and where storms, floods and droughts occur.

I will address the worrisome health effects of global warming and disrupted climate patterns in greater detail, but I should note that the consequences may not all be bad. Very high temperatures in hot regions may reduce snail populations, which have a role in transmitting schistosomiasis, a parasitic disease. High winds may at times disperse pollution. Hotter winters in normally chilly areas may reduce cold-related heart attacks and respiratory ailments. Yet overall, the undesirable effects of more variable weather are likely to include new stresses and nasty surprises that will overshadow any benefits.

Mosquitoes Rule in the Heat

Diseases relayed by mosquitoes—

such as malaria, dengue fever, yellow fever and several kinds of encephalitis—are among those eliciting the greatest concern as the world warms. Mosquitoes acquire disease-causing microorganisms when they take a blood meal from an infected animal or person. Then the pathogen reproduces inside the insects, which may deliver disease-causing doses to the next individuals they bite.

Mosquito-borne disorders are projected to become increasingly prevalent because their insect carriers, or "vectors," are very sensitive to meteorological conditions. Cold can be a friend to humans, because it limits mosquitoes to seasons and regions where temperatures stay above certain minimums. Winter freezing kills many eggs, larvae and adults outright. Anopheles mosquitoes, which transmit malaria parasites (such as Plasmodium falciparum), cause sustained outbreaks of malaria only where temperatures routinely exceed 60 degrees Fahrenheit. Similarly, Aedes ae-gypti mosquitoes, responsible for yellow fever and dengue fever, convey virus only where temperatures rarely fall below 50 degrees F.

Excessive heat kills insects as effectively as cold does. Nevertheless, within their survivable range of temperatures, mosquitoes proliferate faster and bite more as the air becomes warmer. At the same time, greater heat speeds the rate at which pathogens inside them reproduce and mature. At 68 degrees F, the immature P. falciparum parasite takes 26 days to develop fully, but at 77 degrees F, it takes only 13 days. The Anopheles mosquitoes that spread this malaria parasite live only several weeks; warmer temperatures raise the odds that the parasites will mature in time for the mosquitoes to transfer the infection. As whole areas heat up, then, mos quitoes could expand into formerly forbidden territories, bringing illness with them. Further, warmer nighttime and winter temperatures may enable them to cause more disease for longer periods in the areas they already inhabit.

The extra heat is not alone in encouraging a rise in mosquito-borne infections. Intensifying floods and droughts resulting from global warming can each help trigger outbreaks by creating breeding grounds for insects whose dessicat-ed eggs remain viable and hatch in still water. As floods recede, they leave puddles. In times of drought, streams can become stagnant pools, and people may put out containers to catch water; these pools and pots, too, can become incubators for new mosquitoes. And the insects can gain another boost if climate change or other processes (such as alterations of habitats by humans) reduce the populations of predators that normally keep mosquitoes in check.

Mosquitoes on the March

Malaria and dengue fever are two of the mosquito-borne diseases most likely to spread dramatically as global temperatures head upward. Malaria (marked by chills, fever, aches and anemia) already kills 3,000 people, mostly children, every day. Some models project that by the end of the 21st century, ongoing warming will have enlarged the zone of potential malaria transmission from an area containing 45 percent of the world's population to an area containing about 60 percent. That news is bad indeed, considering that no vaccine is available and that the causative parasites are becoming resistant to standard drugs.

True to the models, malaria is reappearing north and south of the tropics. The U.S. has long been home to Anopheles mosquitoes, and malaria circulated here decades ago. By the 1980s mosquito-control programs and other public health measures had restricted the disorder to California. Since 1990, however, when the hottest decade on record began, outbreaks of locally transmitted malaria have occurred during hot spells in Texas, Florida, Georgia, Michigan, New Jersey and New York (as well as in Toronto). These episodes undoubtedly started with a traveler or stowaway mosquito carrying malaria parasites. But the parasites clearly found friendly conditions in the U.S.—enough warmth and humidity, and plenty of mosquitoes able to transport them to victims who had not traveled. Malaria has returned to the Korean peninsula, parts of southern Europe and the former Soviet Union and to the coast of South Africa along the Indian Ocean.

Dengue, or "breakbone," fever (a severe flulike viral illness that sometimes causes fatal internal bleeding) is spreading as well. Today it afflicts an estimated 50 million to 100 million in the tropics and subtropics (mainly in urban areas and their surroundings). It has broadened its range in the Americas over the past 10 years and had reached down to Buenos Aires by the end of the 1990s. It has also found its way to northern Australia. Neither a vaccine nor a specific drug treatment is yet available.

Although these expansions of malaria and dengue fever certainly fit the predictions, the cause of that growth cannot be traced conclusively to global warming. Other factors could have been involved as well—for instance, disruption of the environment in ways that favor mosquito proliferation, declines in mosquito-control and other public health programs, and rises in drug and pesticide resistance. The case for a climatic contribution becomes stronger, however, when other projected consequences of global warming appear in concert with disease outbreaks.

Such is the case in highlands around the world. There, as anticipated, warmth is climbing up many mountains, along with plants and butterflies, and summit glaciers are melting. Since 1970 the elevation at which temperatures are always below freezing has ascended al most 500 feet in the tropics. Marching upward, too, are mosquitoes and mosquito-borne diseases.

In the 19th century, European colonists in Africa settled in the cooler mountains to escape the dangerous swamp air ("malaria") that fostered disease in the lowlands. Today many of those havens are compromised. Insects and insect-borne infections are being reported at high elevations in South and Central America, Asia, and east and central Africa. Since 1980 Ae. aegypti mosquitoes, once limited by temperature thresholds to low altitudes, have been found above one mile in the highlands of northern India and at 1.3 miles in the Colombian Andes. Their presence magnifies the risk that dengue and yellow fever may follow. Dengue fever itself has struck at the mile mark in Taxco, Mexico. Patterns of insect migration change faster in the mountains than they do at sea level. Those alterations can thus serve as indicators of climate change and of diseases likely to expand their range.

Opportunists Like Sequential Extremes

The increased climate variability accompanying warming will probably be more important than the rising heat itself in fueling unwelcome outbreaks of certain vector-borne illnesses. For instance, warm winters followed by hot, dry summers (a pattern that could

Changes Are Already Under Way

Computer models have predicted that global warming would produce several changes in the highlands: summit glaciers (like North Polar sea ice) would begin to melt, and plants, mosquitoes and mosquito-borne diseases would migrate upward into regions formerly too cold for them (diagram).All these predictions are coming true.This convergence strongly suggests that the upward expansion of mosquitoes and mosquito-borne diseases documented in the past 15 years ( list at bottom ) has stemmed,at least in part,from rising temperatures.


Cold temperatures caused freezing at high elevations and limited mosquitoes, mosquito-borne diseases and many plants to low altitudes


Increased warmth has caused mountain glaciers to shrink in the tropics and temperate zones


Increased warmth has caused mountain glaciers to shrink in the tropics and temperate zones

Was this article helpful?

0 0
Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook

Post a comment