Urban Policies to Promote Renewable Energy

Renewable energy sources are receiving substantial attention in these European cities and are being promoted by local governments in a variety of ways. Stockholm Energi fuels its district heating system in several different ways, including through the use of biofuels, the extraction of heat energy from wastewater using heat pumps, and the extraction of bio-oil from pulp and paper mills, among other sources. The city's energy company has plans to increase the use of these kinds of biofuels (with a target of about 50 percent from renewable sources). A relatively high percentage of the city's electricity production also is provided through hydroelectric sources.

Some of the cities are actively pursuing wind energy. The city of Bologna, for example, has invested in a 3.5 MW wind park. The city of Heidelberg has developed several renewable energy projects, including a hydroelectric power plant on the Neckar River and plans to build three wind turbines on a high spot not far from the old section of the city (to provide 600 kW of power).

Wind energy has been of considerable interest in Saarbrücken, and this city has invested (about 24 percent ownership) in a windpark in Ensheim, in the northern part of the länder (state). Saarbrücken has basically given up on the notion of supporting wind within its city borders, in part because the city lies in a valley but also because it sees few opportunities to accommodate wind turbines without the noise and aesthetic objections it believes residents will have to them. The Stadtwerke in Saarbrücken has also been exploring a number of renewable energy sources. An experimental biomass project has been started in Bliestal, involving the planting of 10 hectares of biomass plants to be used as fuel.

To be sure, much of the growth in renewables in European cities can be accounted for through extensive central government subsidies and development monies. Moreover, a growing number of European nations, such as Denmark and Sweden, have adopted carbon taxes that facilitate this shift. The dramatic rise in the use of biomass energy in Sweden, for example, is in large degree a result of its carbon tax (The Economist, 1998). The cost of renewables—especially wind, but also photovoltaics—has gone down sharply as result of government subsidies (e.g., wind is now reported to be competitive with fossil-fuel-based power in the United Kingdom; the costs of wind have gone down markedly since 1990, with a reported fifteen-fold increase in production in Germany and elsewhere; The Econo -mist, 1998).

Denmark has a long history of national energy planning and has adopted (since the 1970s) a series of increasingly ambitious national energy plans. The most recent version, Energy 21, sets ambitious carbon dioxide re d u c-tion targets: 20 percent reduction by 2005 (from 1998 levels) and halving its carbon dioxide emissions by 2030. Key components of Energy 21 are an i n c rased promotion and development of CHP and a greater emphasis given to renewable energy sources, especially wind and biomass (as well as the goal of increasing their share of the power mix by 1 percent per year).

Denmark has taken impressive steps to promote wind energy and to treat it as such a significant part of its energy mix. Wind energy has received special attention and priority in Denmark, where the national target of providing 30 percent of its energy supply from wind by the year 2020 has been embraced. Wind already represents an impressive 8 percent of its energy supply. Here, planning for wind energy has also been integrated with spatial planning. A national atlas, based on wind patterns, separation from telecommunication corridors, and location of sensitive environmental areas, has been developed. Municipalities use this atlas as the basis for their own planning. Under the Danish planning system, all municipalities must delineate appropriate sites for future wind parks in their structure plans.

In the fall of 1997, Denmark unveiled an impressive Marine Windmill Action Plan, which calls for the building of 500 marine windmills intended to produce 750 MW of power in the next ten years and an amazing 4,000 MW by 2030 (Engelund, 1997). This will increase Denmark's percentage share of wind energy near 50 percent. Marine windmill parks are seen to have significant advantages over land sites, including the ability to take advantage of windier sites and a reduced impact on the landscape. The amount of marine space necessary will be quite small—an estimated 1 percent. Some environmental concerns remain, especially concerns by the ornithological community about the impacts on birds. Some controversy has also already arisen about the initial site choices, which environmentalists believe are too centered on shallow locations (marine windmills can now be sited on marine locations as deep as 15 meters and perhaps deeper). The windmills will be funded through an increase in electricity rates, although the energy costs compared to traditional coal-fired power generation are already fairly competitive (5 to 5.5 U.S. cents compared to 3.2 to 4.0 U.S. cents). These initiatives are also wisely viewed by the Danish government as an opportunity to advance the technology and commercial interests of the country.

Installation and production of wind energy in European countries has seen dramatic growth. Of the 1,510 MW installed worldwide in 1997, a very high percentage is accounted for by European nations, especially Germany, Denmark, and most recently Spain (Rackstraw, 1998). Germany, which saw the installation of some 532 MW in 1997 alone, provides significant financial support for wind energy, including the implementation of an electricity feed law (which requires utilities to buy wind production and sets a minimum price based on average electric rates). Other capital and operating subsidies are provided as well, some at lander level. As Rack-

straw notes, the "political dynamic" in Germany in large part explains this level of support. A strong political lobby and popular support for renew-ables are important explanations. "There is broad and deep support for wind energy (and environmental causes in general) in Germany, which insulates the German wind policy approach from attack" (Rackstraw, 1998, pp. 23-24). The Danish public has even stronger support for wind, and in both countries, the employment generated from this industry (Denmark supplies 75 percent of the wind turbines in the world) is also highly valued.

Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Post a comment