Heterocycles 2001 54 1 131-138

Free Power Secrets

Making Your Own Fuel

Get Instant Access

1. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford Univ. Press, Oxford, 1998, pp. 30-48.

2. Okkerse, C.; van Bekkum, H. From fossil to green, Green Chem., 1999, 107-114.

3. National Research Council, USA, Priorities for Research and Commercialization of Biobased Industrial Products, Natl. Acad. Sci. Press, Washington, DC, 2000.

4. U.S. Department of Energy (DOE): (a) Vision for Bioenergy & Biobased Products in The United States, October 2002; bioproducts-bioenergy.gov/pdfs/BioVision_03_ Web.pdf. (b) Roadmap for Biomass Technologies in the United States, December 2002; bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf

5. (a) Campbell, C. J.; Laherrere, J. H. The end of cheap oil, Sci. Am., March 1998, 60-65. (b) Attarian, J. The coming end of cheap oil: Hubbert's peak and beyond, Soc. Contracts, 2002, 12, 276-286. (c) Klass, D. H. Fossil Fuel Reserves and Depletion, in Biomass for Renewable Energy, Fuels and Chemicals, Acad. Press, San Diego, 1998, pp. 410-419.

6. UN Food & Agriculture Organization, World Sugar Production, 2005/06; fao.org/ docrep/009/j7927e /j7927e07.htm.

7. Klass, D. H. Organic commodity chemicals from biomass, in Biomass for Renewable Energy, Fuels, and Chemicals, Acad. Press, San Diego, 1998, pp. 495-546.

8. Carbohydrates as Organic Raw Materials, VCH, Weinheim/New York: (a) Vol. I, Lichtenthaler, F. W. (Ed.), 1991, 365 pp; (b) Vol. II, Descotes, G. (Ed.), 1993, 278 pp.; (c) Vol. III, van Bekkum, H.; Roper, H.; Voragen, A. G. J. (Eds.), 1996, 358 pp.; (d) Vol. IV, Praznik, W. (Ed.), Wiener Univ. Verlag, Vienna, 1998, 292 pp.

9. Lichtenthaler, F. W.; Mondel, S. Perspectives in the use of low molecular weight carbohydrates as organic raw materials, Pure Appl. Chem., 1997, 69, 1853-1866.

10. Bozell, J. J. (Ed.), Chemicals and Materials from Renewable Resources, ACS Symposium Series No. 784, American Chemical Society, Washington, D.C., 2001, 226 pp.

11. (a) Lichtenthaler, F. W. Unsaturated O- and N-heterocycles from carbohydrate feedstocks, Acc. Chem. Res., 2002, 35, 728-737; (b) Lichtenthaler, F. W. Carbohydrates as Organic Raw Materials, Ullmann's Encyclopedia Industrial Chem., 6th Ed., Vol. 6, 2002, pp. 262-273; Electronic Release, 7th Ed., chapt. 9, Wiley-VCH, Weinheim, 2007; (c) Lichtenthaler, F. W.; Peters, S. Comptes Rend. Chim., 2004, 7, 65-90.

12. Wirtschaftliche Vereinigung Zucker, Biokraftstoffe aus Zuckerrüben und Getreide; zuckerwirtschaft.de/pdf/Broschuere_BioE.pdf

13. (a) For a pertinent overview, see: Himmel, M. E.; Adney, W. A.; Baker, J. O.; et al. Advanced bioethanol production technologies, in Fuels and Chemicals from Biomass, Saha, B. C.; Woodward, J., Eds., ACS Symposium Series No. 666, American chemical Society, Washington D.C., 1997, pp. 2-45. (b) Goebel, O. Comparison of process economics for synthetic and fermentation ethanol, Ullmanns Encyclopedia Industrial Chem., Electronic Release, 7th Ed., chap. 7, Wiley-VCH, Weinheim, 2007.

14. (a) McKillip, W. J.; Collin, G.; Hoke, H.; Zeitsch, K. J. Furan and derivatives, Ullmanns Encyclopedia Industrial Chem., Electronic Release, 7th Ed., Wiley-VCH, Weinheim, 2007; (b) Zeitsch, K. J. The Chemistry and Technology of Furfural and Its Many Byproducts, Elsevier, Amsterdam, 2000, 374pp.

15. (a) Gandini, A.; Belgacem, M. N. Furans in polymer chemistry, Prog. Polym. Sci., 1997, 22, 1203-1379; (b) Moreau, C.; Belgacem, M. N.; Gandini, A., Substituted furans from carbohydrates and ensuing polymers, Topics Catal., 2004, 27, 11-30.

16. Klingler, F. D. Levulinic acid, Ullmann's Encyclopedia Industrial Chem., Electronic Release, 7th Ed., Wiley-VCH, Weinheim, 2007.

17. Vogel, R. Sorbitol, Ullmann's Encyclopedia Industrial Chem., 5th Ed., Vol. A25, 1994, pp. 418-423.

18. Oster, B.; Fechtel, W. Vitamin C, Ullmanns Encyclopedia Industrial Chem., 5th Ed., Vol. A27, 1996, pp. 547-559.

19. McCoy, M. Seeking biomaterials, Chem. Eng. News, 2003, 81(8), 18; 2003, 81(45), 17-18.

20. Ritter, S. K. Green chemistry progress report, Chem. Eng. News, 2002, 80(47), 20.

21. natureworksllc.com/Product-And-Applications.aspx

22. vertecbiosolvents.com/

23. For a pertinent review, see: Hill, K.; Rhode, O. Sugar-based surfactants for consumer products and technical applications, Lipid/Fett, 1999, 101, 23-33.

24. (a) Desai, N. B. Esters of sucrose and glucose as cosmetic materials, Cosmetics & Toiletries, 1990, 105, 99-107; (b) Mitsubishi-Kagaku Foods Corp., Sugar esters; mfc.co.jp / english/whatsse.htm

25. von Rybinski, W.; Hill, K. Alkyl polyglycosides—properties and applications of a new class of surfactants, Angew. Chem. Int. Ed., 1998, 37, 1328-1345.

26. McGuire, J. L.; Hasskare, H.; et al. Pharmaceuticals: general survey and development, Ullmann's Encyclopedia Industrial Chem., Electronic Release, 7th Ed., Wiley-VCH, Weinheim, 2007.

27. Silviri, L. A.; DeAngelis, N. J. Isosorbide dinitrate, Anal. Profiles Drug Subst., 1975, 4, 225-244.

28. Maryanoff, B. E.; Nortey, S. O.; Gardocki, S. O.; et al. Anticonvulsant sulfamates. 2,3:4,5-Di-O-isopropylidene-ß-D-fructopyranose sulfamate, J. Med. Chem., 1987, 30, 880-887.

29. Hugill, A., Introductory Dedicational Metaphor to Sugar and All That. A History of Tate & Lyle, Gentry Books, London, 1978.

30. Schenck, F. W. Glucose and glucose-containing syrups, Ullmann's Encyclopedia of Industrial Chem., 4th Ed., Vol. A12, 1989, pp. 457-476.

31. Lichtenthaler, F. W. Emil Fischer's establishment of the configuration of sugars—a centennial tribute, Angew. Chem. Int. Ed., 1992, 31, 1541-1556.

32. For useful preparative procedures, see: Methods Carbohydr. Chem., 1963, 2, 318-325; 326-328; 405-408; 427-430.

33. Garcia-Gonzales, F. Adv. Carbohydr. Chem., 1956, 11, 97-143.

34. (a) Rodrigues, F.; Canac, Y.; Lubineau, A. Chem. Commun., 2000, 2049-2059; (b) Riemann, I.; Papadopoulos, M. A.; Knorst, M.; Fessner, W.-D. Aust. J. Chem., 2002, 55, 147-154.

35. Chapleur, Y. (Ed.), Carbohydrate Mimics, Wiley-VCH, Weinheim, 1998, 604 pp., and refs. cited therein.

36. Lichtenthaler, F. W. Building blocks from sugars and their use in natural product synthesis, in R. Scheffold, Ed., Modern Synthetic Methods, Vol. 6, VCH, Weinheim, 1992, pp. 273-376.

37. Roth, W.; Pigman, W. Methods Carbohydr. Chem., 1963, 2, 405 -408.

38. Ferrier, R. J.; Prasad, N. J. Chem. Soc. (C), 1969, 570-575.

39. Lichtenthaler, F. W.; Rönninger, S.; Jarglis, P. Liebigs Ann. Chem., 1989, 1153-1161.

40. Hanessian, S.; Faucher, A. M.; Leger, S. Tetrahedron, 1990, 46, 231-243.

41. Czernecki, S.; Vijayakuraman, K.; Ville, G. J. Org. Chem., 1986, 51, 5472-5475.

42. Fraser-Reid, B.; McLean, A.; Usherwood, E. W.; Yunker, M. Can. J. Chem., 1970, 48, 2877-2884.

43. Ferrier, R. J. Methods Carbohydr. Chem., 1972, 6, 307-311.

44. Lichtenthaler, F. W.; Kraska, U. Carbohydr. Res., 1977, 58, 363-377.

45. Lichtenthaler, F. W.; Nishiyama, S.; Weimer, T. Liebigs Ann., 1989, 1163-1170.

46. Lichtenthaler, F. W.; Ogawa, S.; Heidel, P. Chem. Ber., 1977, 110, 3324-3332.

47. Shafizadeh, F.; Furneaux, R.; Stevenson, T. Carbohydr. Res., 1979, 71, 169-191.

48. Witczak, Z. J. Pure Appl. Chem., 1994, 66, 2189-2192.

49. Beelik, A. Adv. Carbohydr. Chem., 1956, 11, 145-183.

50. Lichtenthaler, F. W. Pure Appl. Chem., 1978, 50, 1343-1362.

51. Nelson, C.; Gratzl, J. Carbohydr. Res., 1978, 60, 267-273.

53. Hustede, H.; Haberstroh, H.-J.; Schinzig, E. Gluconic acid, Ullmann's Encyclopedia Industrial Chem., 5th Ed., Vol. A12, 1989, pp. 449-456.

54. Mehltretter, C. L. D-Glucaric acid, Methods Carbohydr. Chem., 1963, 2, 46-48.

55. Klingler, F. D. Oxocarboxylic acids, Ullmann's Encyclopedia Industrial Chem., Electronic Release, 7th Ed., chap. 4, Wiley-VCH, Weinheim, 2007.

56. Hayes, D. J.; Ross, J.; Hayes, M. H. B.; Fitzpatrick, S. The biofine process, in Bio-refineries—Industrial Processes and Products, Kamm, B.; Gruber, P.; Kamm, M. (Eds.), Wiley-VCH, New York, 2006, pp. 3-59.

57. DOE, Energy, Efficiency and Renewable Energy, Top value added chemicals from biomass. Screening for potential candidates from sugars: (a) Levulinic acid, pp. 45-48; (b) 3-Hydroxypropionic acid (3-HPA), pp. 29-31; (c) Four-carbon 1,4-diacids, pp. 22-25; (d) Itaconic acid, pp. 42-44; nrel.gov/docs/fy04osti/ 35523.pdf, 67 pp.

58. Huber, G. W.; Cortright, R. D., Dumesic, J. S. Angew. Chem. Int. Ed., 2004, 43, 1549-1551.

59. Huber, G. W.; Chheda, J. N.; Barret, C. J.; Dumesic, J. A. Science, 2005, 308, 1446-1448.

60. For pertinent reviews on HMF, see (a) Lewkowski, J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives, ARKIVOC, 2001, 17-54; (b) B. F. M. Kuster, Manufacture of 5-hydroxymethylfurfural, Starch/Stärke, 1990, 42, 314-321. Newer developments; (c) Bicker, M.; Hirth, J.; Vogel, H. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone, Green Chem.,

2003, 5, 280-284.; (d) Lansalot-Matras, C.; Moreau, C. Dehydration of fructose to 5-hydroxymethylfurfural in ionic liquids, Catalysis Commun., 2003, 4, 517-520.

61. Wilson, E. K. Engineering cell-based factories, Chem. Eng. News, 2005, 83(12), 41 -44.

62. Riese, J., Bachmann, R. Industrial biotechnology: Turning the potential into profits, Chem. Market Rep., 2004 (Dec.1.); mckinsey.com/clientservice/chemicals/ potentialprofit.asp

63. For pertinent reviews, see (a) Lee, S. Y.; Hong, S. H.; Lee, S. H.; Park, S. J. Fermentative production of chemicals that can be used for polymer synthesis, Macromol. Biosci., 2004, 4, 157-164. (b) Tsao, G. T.; Cao, N. J.; Du, J.; Gong, C. S. Production of multifunctional organic acids from renewable resources, Adv. Biochim. Eng. Biotechnol., 1999, 65, 243-280.

64. (a) Cameron, D. C. 3-Hydroxypropionic acid: a new platform chemical from the biorefinery, 2003, ibeweb.org/meetings/2005/proceedings/abstracts/industry_ abstracts. html; (b) Tullo, A. Chem. Eng. News, 2005, 83(26), 11.

65. Lohbeck, K.; Haferkorn, H.; Fuhrmann, W. Maleic and fumaric acids, Ullmanns Encyclopedia Industrial Chem., 5th Ed., Vol. A16, 1990, pp. 53-62.

66. Carta, F. S.; Soccol, C. R.; Ramos, L. P.; Fontana, J. D. Production of fumaric acid by fermentation of enzymic hydrolyzates derived from cassava bagasse, Bioresour. Technol., 1999, 68, 23-28.

67. (a) Vemuri, G. N.; Eiteman, M. A.; Altman, E. Succinate production in dual-phase E.coli fermentations depends on the time of transition from aerobic to anaerobic conditions, J. Ind. Microbiol. Biotechnol., 2002, 28, 325-332; (b) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered E.coli strains, Appl. Environ. Microbiol., 2002, 68, 1715-1727; (c) Gokarn, R. R.; Eiteman, M. A.; Sridhar, J. Production of succinate by anaerobic microorganisms, in Fuels and Chemicals from Biomass, Saha, B. D.; Woodard, J. (Eds.), ACS Symposium Series No. 666, American Chemical Society, Washington, D.C., 1997, pp. 237-279.

68. Kane, J. H.; Finlay, A.; Amann, P. F. (Chas. Pfizer, Merck), Itaconic acid., U.S. Patent, 2,385,283 (1945); Chem. Abstr, 1946, 40, 995.

69. (a) Reddy, C. S.; Singh, R. P. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10, Bioresour. Technol., 2002, 85, 69-71; (b) Willke, T.; Welter, K.; Vorlop, K. D. Biotechnical production of itaconic acid from sugar, Appl. Microbiol. Biotechnol., 2001, 56, 289-295.

70. DuPont, 2007:2.dupont.com/Sorona/en_US/index.html

71. Shell, 2007: shellchemicals.com/corterra/1,1098,280,00.html

72. Zhu, M. M.; Lawman, P. D.; Cameron, D. C. Improving 1,3-propanediol production from glycerol in a metabolically engineered E.coli by reducing accumulation of glycerol-3-phosphate, Biotechnol. Prog., 2002, 18, 694-699.

73. For an informative review, see Zeng, A. N.; Biebl, H. Bulk chemicals from biomass: Ease of 1,3-propanediol production and new trends, Adv. Biochem. Eng./Biotechn., 2002, 74, 239-259.

74. Tate & Lyle 2007, press release:

75. Altaras, N. E.; Cameron, D. C. Metabolic engineering of a 1,2-propanediol pathway in E.coli, Appl. Environ. Microbiol., 1999, 65, 1180-1185. (b) Enhanced production of

(R)-1,2-propanediol by metabolically engineered E.coli, Biotechnol. Progr., 2000, 16, 940-946. (c) Altaras, N. E.; Etzel, M. R.; Cameron, D. C. Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum, Biotechnol. Progr., 2001, 17, 52-56.

76. Nishino, N.; Yochida, M.; Shiota, H.; Sakaguchi, E. Accommodation of 1,2-propane-diol and enhancement of aerobic stability in whole crop maize silage inocculated with Lactobacillus buchneri, J. Appl. Microbiol., 2003, 94, 800-807.

77. Wach, W. Fructose, Ullmann's Encyclopedia Industrial Chem., Electronic Release, 7th Ed., Wiley-VCH, Weinheim, 2007.

78. Fontana, A.; Hermann, B.; Guirand, J. P., in Inulin and Inulin-containing Crops, A. Fuchs (Ed.), Elsevier Science Publishers, Amsterdam/London, 1993, pp. 251-258.

79. (a) Lichtenthaler, F. W. Towards improving the utility of ketoses as organic raw materials, Carbohydr. Res. 1998, 313, 69-89.; (b) Schneider, B.; Lichtenthaler, F. W.; Steinle, G.; Schiweck, H. Distribution of furanoid and pyranoid tautomers of D-fructose in solution, Liebigs Ann. Chem., 1985, 2454-2464.

80. Kanters, J. A.; Roelofson, G.; Alblas, B. P.; Meinders, I. The crystal structure of fructose, Acta Cryst., 1977, B33, 665-672.

81. Chan, J. Y. C.; Cheong, P. P. L.; Hough, L.; Richardson, A. C. J. Chem. Soc., Perkin Trans, 1 1985, 1447-1455.

82. Lichtenthaler, F. W.; Klotz, J.; Flath, F. J. Acylation and carbamoylation of D-fructose: acyclic, furanoid and pyranoid derivatives, Liebigs Ann. Chem., 1995, 2069-2080.

83. Lichtenthaler, W. F.; Hahn, S.; Flath, F. J. Pyranoid exo- and endo-D-fructals and L-sorbals: practical routes for their acquisition and ensuing reactions, Liebigs Ann. Chem., 1995, 2081-2088.

84. Boettcher, A.; Lichtenthaler, F. W. D-Fructose and L-sorbose-derived exo- and endo-hydroxyglycal esters and some of their chemistry, Tetrahedron: Asymmetry, 2004, 15, 2693-2701.

85. Kang, J.; Lim, G. J.; Yoon, S. K.; Kim, M. Y. J. Org. Chem., 1995, 60, 564-577.

86. Brady, R. F., Jr. Carbohydr. Res., 1970, 15, 35-40.

87. Peters, S.; Lichtenthaler, F. W.; Lindner, H. J. Tetrahedron: Asymmetry, 2003, 14, 2574-2579.

88. Weidenhagen, R.; Hermann, R. Ber. Dtsch. Chem. Ges., 1937, 70, 570-583; Org. Synth. Coll., 1955, III460-462.

89. (a) Brust, A.; Lichtenthaler, F. W., unpublished; (b) Streith, J.; Boiron, A.; Frankowski, A.; et al. A general one-pot synthesis of imidazolosugars, Synthesis, 1995, 944-946.

90. Rozanski, A.; Bielawski, K.; Boltryk, K.; Bartulewicz, D. Akad. Med. Juiliana Marchlewskiego Bialymstoku, 1991, 35-36, 57-63; Chem. Abstr., 1992, 188, 22471 m.

91. Ohle, H.; Hielscher, M. Tetraoxybutyl-chinoxalin, Ber. Dtsch. Chem. Ges., 1941, 74, 13-19.

92. Schiweck, H.; Munir, M.; Rapp, K.; Vogel, M. New developments in the use of sucrose as an industrial bulk chemical, in Carbohydrates as Organic Raw Materials, Lichtenthaler, F. W. (ed.), VCH, Weinheim, 1991, pp. 57-94; Zuckerind. (Berlin) 1990, 115, 555-565.

93. El Haji, T.; Masroua, A.; Martin, J.-C.; Descotes, G. Synthesis of 5-(hydroxymethyl)-furan-2-carboxaldehyde and its derivatives by acid treatment of sugars on ion-exchange resins, Bull. Soc. Chim. Fr., 1987, 855-860.

94. (a) Musau, R. M.; Munavu, R. M. Preparation of 5-hydroxymethyl-2-furaldehyde from D-fructose in the presence of DMSO, Biomass 1987, 13, 67-74; (b) Larousse, C.; Rigal, L.; Gaset, A. Thermal degradation of 5-hydroxymethylfurfural, J. Chem. Technol. Biotechnol., 1992, 53, 111-116.

95. Schiavo, V.; Descotes, G.; Mentech, J. Hydrogenation of 5-hydroxymethylfurfural, in aqueous medium, Bull. Soc. Chim. Fr., 1991, 128, 704-711.

96. Elming, N.; Clauson-Kaas, N. 6-Methyl-3-pyridinol from 2-hydroxymethyl-5-aminomethyl-furan, Acta Chem. Scand., 1956, 10, 1603-1605.

97. (a) Leupold, E.; Wiesner, M.; Schlingmann, M.; Rapp, K. Catalytic oxidation of 5-hydroxymethylfurfural, Ger. Offen. DE 3 826 073 (1990); Chem. Abstr. 1990, 113, 995; (b) Partenheimer, W.; Grushin, V. V. Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air oxidation of HMF, Adv. Synth. Catal. 2001; 343, 102111; (c) Ribeiro, M. L.; Schuchardt, U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid, Catal. Commun., 2003,4, 83-86.

98. Koch, H.; Pein, J. Condensations between 5-hydroxymethylfurfural, phenol, and formaldehyde, Polym. Bull. (Berlin), 1985, 13, 525-532; Starch/Stärke, 1983, 35, 304-313.

99. Whistler, R. L.; BeMiller, J. N. a-D-Xylose, Methods Carbohydr. Chem., 1962, 1, 88-90.

100. Bar, A. Xylitol. Ullmann's Encyclopedia Industrial Chem., 5th Ed., Vol. A25, 1994, pp. 416-417.

101. Olin, S. M. Methods Carbohydr. Chem., 1962, 1, 148-151.

102. Weygand, F. Methods Carbohydr. Chem., 1962, 1, 182-185.

103. Ferrier, R. J.; Sankey, G. H. J. Chem. Soc. C, 1966, 2339-2345.

104. Diehl, V.; Cuny, E.; Lichtenthaler, F. W. Conversion of D-xylose into hydrophilically functionalized pyrazoles, Heterocycles, 1998, 48, 1193-1201.

105. Oikawa, M.; Müller, C.; Kunz, M.; Lichtenthaler, F. W. Hydrophilic pyrazoles from sugars, Carbohydr. Res., 1998, 309, 269-279.

106. Niu, W.; Molefe, M. N.; Frost, J. W. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol, J. Am. Chem. Soc., 2003, 125, 12998-12999.

107. Brown, G. M.; Levy, H. A. Acta Cryst., 1973, B29, 790-797; C. Hanson, J. C.; Sieker, L. C.; Jensen, L. H. Acta Cryst., 1973, B29, 797-808.

108. Immel, S.; Lichtenthaler, F. W. The conformation of sucrose in water: a molecular dynamics approach, Liebigs Ann. Chem., 1995, 1938-1947.

109. Lichtenthaler, F. W.; Immel, S. Computersimulation of chemical and biological properties of sucrose, Internat. Sugar J., 1995, 97, 12-22.

110. Lichtenthaler, F. W.; Pokinskyj, P.; Immel, S. Sucrose as a renewable organic raw material, Zuckerind. (Berlin), 1996, 121, 174-190.

111. Queneau, Y.; Fitremann, J.; Trombotto, S. The chemistry of unprotected sucrose: the selectivity issue, Comptes Rend. Chim., 2004, 7, 177-188.

112. Stoppok, E.; Matalla, K.; Buchholz, K. Appl. Microbiol. Biotechnol., 1992, 36, 604610.

113. (a) Pietsch, M.; Walter, M.; Buchholz, K. Regioselective synthesis of new sucrose derivatives via 3-ketosucrose, Carbohydr. Res., 1994, 254, 183-194; (b) Simiand, C.; Samain, E.; Martin, O. R.; Driguez, H. Sucrose analogues modified at position 3, Carbohydr. Res. 1995, 267, 1-15.

114. Kunz, M.; Puke, H.; Recker, C.; et al. (Südzucker AG), Process and apparatus for the preparation of mono-oxidized products from carbohydrates, Ger. Offen. DE 4 307 388 (1994); Chem. Abstr., 1995, 122, 56411.

115. Edye, L. A.; Meehan, G. V.; Richards, G. N. Platinum-catalyzed oxidation of sucrose, J. Carbohydr. Chem., 1991, 10, 11-23; 1994, 13, 273-283.

116. Kunz, M.; Schwarz, A.; Kowalczyk, J. (Südzucker AG), Process for continuous manufacture of di- and higher-oxidized carboxylic acids from carbohydrates, Ger. Offen. DE 19 542 287 (1996); Chem. Abstr., 1997, 127, 52504.

117. Fritsche-Lang, W.; Leupold, E. I.; Schlingmann, M. Preparation of sucrose tricarboxylic acid, Ger. Offen. DE 3 535 720 (1987); Chem. Abstr., 1987, 107, 59408.

118. Lemoine, S.; Thomazeau, C.; Joannard, D.; et al. Sucrose tricarboxylate by sonocata-lyzed TEMPO-mediated oxidation, Carbohydr. Res., 2000, 326, 176-184.

119. (a) Mondel, S. Practical approaches to surface-active 6,6-diamides and diesters of sucrose, Dissertation, Technical University Darmstadt, 1997; (b) Vlach, A. Preparation and polycondensation of sucrose-derived monomers, Dissertation, Technical University Darmstadt, 2001; (c) Cuny, E.; Mondel, S.; Lichtenthaler, F. W. Novel polyamides from disaccharide-derived dicarboxylic acids, 23. Int. Carbohydrate Symp., Whistler, Can., 2006, Abstr. TUE.PS 12; #292 at csi.chemie.tu-darmstadt.de/ ak / fwlicht / publlist.html

120. Hurford, J. R., Surface-active agents derived from disaccharides, in Developments in Food Carbohydrates, Vol. 2, Lee, C. K. (Ed.), 1980, pp. 327-350, and literature cited therein.

121. Procter & Gamble, olean.com/

122. Mattson, F. H.; Volpenhein, R. A. (Procter & Gamble Co.), Low-caloric fat-containing food compositions, U.S. Patent 3,600,186 (1971); Chem. Abstr., 1971, 75, 139614.

123. Food & Drug Administration, Olestra and Other Fat Substitutes, 1995; fda.gov/ opacom/backgrounders/olestra.html

124. Lichtenthaler, F. W.; Immel, S.; Pokinskyj, P. Selective 2-O-benzylation of sucrose. A facile entry into its 2-keto- and 2-deoxy derivatives and to sucrosamine, Liebigs Ann. Chem., 1995, 1938-1947.

125. Gagnaire, J.; Cornet, A.; Bouchu, A.; et al. Colloids and Surfaces A, 2000, 172, 125-138.

126. Danel, M.; Gagnaire, J.; Queneau, Y. J. Mol. Catal. A, 2002, 184, 131-138.

127. (a) Kollonitsch, V. Sucrose Chemicals, The Int. Sugar Research Foundation, Washington, D.C., 1970; (b) Meath, A. R.; Booth, L. D. Sucrose and sucrose-modified polyols in urethane foams, in J. L. Hickson (Ed.), Sucrochemistry, ACS Symposium Series No. 41, American Chemical Society Washington, D.C., 1977, pp. 257-263; (c) Jhurry, D.; Deffieux, A. Sucrose-based polymers: polyurethanes with sucrose in the main chain, Eur. Polym. J., 1997, 33, 1577-1582.

128. Kunz, M. Isomaltulose, trehalulose and isomalt, Ullmann's Encyclopedia Industrial Chem., 5th Ed., Vol. A25, 1994, pp. 426-429.

130. Trombotto, S. Danel, M.; Fitremann, J.; et al. J. Org. Chem., 2003, 68, 6672-6678.

131. Lichtenthaler, F. W.; Klimesch, R.; Müller, V.; Kunz, M. Disaccharide-building blocks from isomaltulose: glucosyl-a(1!5)-D-arabinonic acid and ensuing products, LiebigsAnn., 1993, 975-980.

132. Lichtenthaler, F. W.; Martin, D.; Weber, T.; Schiweck, H., 5-(a-D-Glucosyl-oxymethyl)-furfural: preparation from isomaltulose and exploration of its ensuing chemistry, (a) Ger. Offen.3 936 522 (1989); (b) Liebigs Ann., 1993, 967-974.

133. Hanemann, T.; Haase, W.; Lichtenthaler, F. W. Disaccharide-derived liquid crystals, Liquid Cryst., 1997, 22, 47-50.

134. Lichtenthaler, F. W. Isomaltulose, Carbohydr. Res., 1998, 313, 81-89.

135. For pertinent reviews on synthetic glycopolymers, see (a) Varma, A. J.; Kennedy, J. F.; Galgali, P. Synthetic polymers functionalized by carbohydrates, Carbohydr. Polym., 2004, 56, 429-445; (b) Ladmiral, V.; Media, E.; Haddleton, D. M. Synthetic glycopolymers, Eur. Polym. J., 2004, 40, 431-449.

136. (a) Reppe, W.; Hecht, O. Ger. Patient 715, 268 (1936); U.S. Patient 2,157,347 (1939); Chem. Abstr, 1939, 33, 44456; (b) Mikhantev, B. I.; Lapenko, V. L. Vinylation of D-glucose and its acetone derivatives, Zh. Obshch. Khim., 1957, 27, 2840-2841.

137. Gruber, H.; Greber, G. Reactive sucrose derivatives, in Carbohydrates as Organic Raw Materials, Lichtenthaler, F. W. (Ed.), VCH, Weinheim, 1991, pp. 95-116.

138. (a) Jhurry, D.; Deffieux, A.; Fontanille, M.; et al. Linear polymers with sucrose side chains, Makromol. Chem., 1992, 193, 2997-3007.; (b) Fanton, E.; Fayet, C.; Gelas, J.; et al. Synthesis of 4-O- and 6-O-monoacryloyl derivatives of sucrose. Polymerization and copolymerization with styrene, Carbohydr. Res., 1993, 240, 143-152.

139. Ries, P.; Betorello, H. Surface modification of PVC with biodegradable polymers, J. Appl. Polym. Sci., 1997, 64, 1195-1201.

140. Mecking, S. Nature or petrochemistry?—Biologically degradable materials, Angew. Chem., 2004, 116, 1096-1104; Angew. Chem. Int. Ed., 2004, 43, 1078-1085.

141. ERRMA, errma.com

142. Searles, R. Something in the Cellar: Wonderful World of Wine, Souvenir Press Ltd., London, 1986.

Was this article helpful?

0 0
Solar Panel Basics

Solar Panel Basics

Global warming is a huge problem which will significantly affect every country in the world. Many people all over the world are trying to do whatever they can to help combat the effects of global warming. One of the ways that people can fight global warming is to reduce their dependence on non-renewable energy sources like oil and petroleum based products.

Get My Free Ebook

Post a comment