Green Chemistry Circular Economy Global Warming

In 2005, Yves Chauvin (Institut Français du Pétrole), Robert Grubbs (California Institute of Technology), and Richard Schröck (Massachusetts Institute of Technology) were the recipients of the Nobel Prize in Chemistry, "For the development of the metathesis method in organic synthesis." Motivation explicitly states: "This represents a great step forward for 'green chemistry,' reducing potentially hazardous waste through smarter production. Metathesis is an example of how important basic science has been applied for the benefit of man, society and the environment."

To my knowledge, this was the first time the Royal Swedish Academy of Science, with the preceding statement, extended the existence of a tight connection between Science and Ethics. For the sake of correctness, however, the 2001 Nobel laureates in chemistry (Knowles, Noyori, and Sharpless) came from the area of green chemistry. Their awards were for the new chiral syntheses in green manufacture and the discovery of improved "clean" ways to produce pharmaceuticals, an industry that is still one of the highest polluters.

Actually, chemists have always had the benefits of chemistry for society in mind. This was clearly illustrated by Giacomo Ciamician (Trieste, 1857; Bologna, 1922) in the following futuristic sentence published almost one hundred years ago (Science, 36, 385 (1912)):

On arid lands there will spring up industrial colonies without smoke and without smokestacks; forests of glass tubes will extend over the plains and glass buildings will rise everywhere; inside of these will take place the photochemical processes that hitherto have been the guarded secret of the plants, but that will have been mastered by human industry which will know how to make them bear even more abundant fruit than nature, for nature is not in a hurry but mankind is.

Because of this assertion, Ciamician can be considered the father of green chemistry, sharing with today's conception of this discipline the same disapproval of pollution, the same care for mankind, and the same intent to use natural resources. And the dream can today come true, thanks to modern technologies and to wider societal awareness and recognition.

Green chemistry is currently being acknowledged at scientist conventions, such as the recent European Science Open Forum (ESOF 2006), held in Munich, on July 15-18, 2006. ESOF 2006 was the second pan-European General Science Meeting. Its purpose was to promote interaction and dialogue between science and the general public. Green chemistry achieved the same recognition level as other more popular scientific disciplines, such as astronomy, natural disaster prevention, biodiversity, genomics, evolution, and medical science. It was acknowledged to be one of the main options for safeguarding the environmental, as evidenced by the basic enquiry: "Is green chemistry a real option?" This question clearly shows what the media and society want to know from chemists. And a positive answer to this question was given by the session entitled: Green Chemistry: A Tool for Socio-Economic Development and Environmental Protection.

At the same time, a few scientific networks have been established to foster the development of research through high-level capacity building in science, the improvement of regulatory frameworks and public policy design, the enhancement of public outreach and education, and other interventions. Two such organization have recently been created: the International Green Network (IGN) and the Mediterranean Green Network (MEGREC). A brief description of these organizations may clarify the purposes and benefits of this discipline.

The IGN mission includes research, coordination, and sponsorship of scientific collaborations, targeted training for a new generation of scientists, and the support of sustainable development. IGN consists of eight research centers, one in each of the G8 countries, and it will accelerate movement toward a sustainable-energy and materials economy, by bringing together scientists, engineers, research institutions, firms, analysts, and government regulators. IGN will provide know-how, coordination, and sponsorship for scientific collaborations, proper training for the new generation of chemists, and support for sustainable use of chemistry in developing nations. In addition, it will assist industrial production in G8 nations, foster the development of novel competitive technologies, and address such issues as climate change and energy, as well as other environmental concerns, from a chemical standpoint.

MEGREC constitutes a platform for the development of research and training in green chemistry in the countries of the Mediterranean basin, with focus on water management, the exploitation of local natural resources, the production and use of fertilizers, and monitoring and reducing the presence of toxic compounds in the food chain. With a clear focus on priorities for local areas, but with the extended know-how of all the partners.

Such recent developments show how science can also positively relate to ethics, thanks to green chemistry. Green chemistry represents a strategic challenge for the present and the future of the chemical industry, its development being mostly linked to the interrelated needs of and benefits for environment, economy, and society that must be initially approached through new ideas in fundamental research.

The scientific content of green chemistry can be easily taken for the aims of IGN, whose main research topics are: energy, green manufacture, life-cycle analysis, pollution prevention, food security, and chemical resources management.

In order to produce the expected and desired results, programs and strategies must be devised for the development and application of chemistry, and must involve explicit support from national governments to networked organizations that are involved in research, educational/academic, and industrial systems. This interaction is fundamental to the production of long-term and durable benefits.

By considering the opinions of the civil society and tackling the questions concerning chemical production it raises, the governments can achieve a relevant positive result: the merging of the consensus of the academic world and industry with that of youth and public opinion, which are increasingly focusing their attention on the environment and human health protection.

This book covers three leading topics of green chemistry: green reagents, alternative reaction conditions, and green catalysis. It is the culmination of more than 10 years of research in this field. I therefore thank the many authors who contributed to this volume, who year after year were constantly present as expert lecturers at the yearly Summer School on Green Chemistry (Venice), promoted and organized by the Consorzio Interuniversitario "Chimica per l'Ambiente" (Chemistry for the Environment), INCA, and enthusiastically exchanged their expertise with colleagues and students throughout the world.

Finally, if you wonder why the word "Introduction" is included in the title of this book, it is because research in this field is far from completed, and chemists have a long way to go before they meet and satisfy the needs of the environment, economy, and society.

Pietro Tundo

The Ca' Foscari University of Venice and National Interuniversity Consortium, "Chemistry for the Environment"

Was this article helpful?

0 0
Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook

Post a comment