Early ideas about carbon dioxide

A number of scientists realized that the presence of CO2 and water vapor in the atmosphere enhanced the warmth of the Earth by allowing solar radiation to penetrate the atmosphere while trapping the lower temperature given off by the Earth. As far back as 1824, the great French mathematician Fourier4 had described the greenhouse effect of Earth's atmosphere, comparing it with a glass covering a container.

FIGURE 2.1: The top panel shows the increase in CO2 between 1750 and 2000. The dots are data from measurements of CO2 in gas bubbles from ice cores, and the blue line represents smoothed data from instruments. The bottom panels shows the flux to the atmosphere (blue) and the amount that stays in the atmosphere after absorption by the biota and the oceans. The net flux of carbon into the atmosphere clearly tracks closely the flux emitted by burning fossil fuels.

FIGURE 2.1: The top panel shows the increase in CO2 between 1750 and 2000. The dots are data from measurements of CO2 in gas bubbles from ice cores, and the blue line represents smoothed data from instruments. The bottom panels shows the flux to the atmosphere (blue) and the amount that stays in the atmosphere after absorption by the biota and the oceans. The net flux of carbon into the atmosphere clearly tracks closely the flux emitted by burning fossil fuels.

The British physicist John Tyndale published an article5 in 1861 stating that the amount of CO2 in the atmosphere could have a strong effect on climate. Tyndale's interest, however, was in challenging the ice age theory advanced by Croll, recognizing that carbon was cycled through plants and perhaps the ocean and was therefore subject to variations over time. Some 35 years after Tyndale's article appeared, the Swedish chemist Svante Arrhenius in 1896 stated that "the selective absorption of the atmosphere is, according to the researches ofTyndale, Lecher and Pernter, Ront-gen, Heine, Langley, Angstrom, Paschen, and others, of a wholly different kind. It is not exerted by the chief mass of air, but in a high degree by aqueous vapor and carbonic acid, which are present in the air in small quantities."6 Arrhenius was also interested in refuting Croll's theory of ice ages, but he also realized the other problem: the one that would probably arise with too much CO2. He wrote that, "We are evaporating our coal mines into the air," and the result might be a warming of Earth. In this remarkable article, Arrhenius considered both water vapor and ice albedo feedback (which I will discuss in Chapter 3) and predicted that the global temperature would increase by 5°C to 6°C if the CO2 in the atmosphere were doubled. The American geologist Thomas Chamberlin, again presenting an alternative to Croll's theory, referred to CO2 changes as a possible cause.7 He went on to refer in passing to the possible effect on climate of the continued use of fossil fuels in cities, with the attendant production and emission into the atmosphere of CO2.

Over the next four decades, there appears to have been little interest in atmospheric CO2. But in a series of articles published between 1938 and 1961, a British coal mining engineer named George Callendar suggested again that fossil fuel burning could increase the atmospheric loading of CO2 enough to change the climate.8 By analyzing the previous hundred years of CO2 measurements, he found hints of an increase. By estimating the amount of CO2 produced, he noted that the increase in the atmosphere compared well with that produced by fossil fuel burning. There is, however, no indication of how he estimated total fossil fuel burning, and it appears that he assumed that all the CO2 resulting from fossil fuel burning stays in the atmosphere. Using data from the World Weather Records of the Smithsonian Institution, he estimated the increase in global temperature, which he attributed to increased CO2. He regarded the increase in temperature as beneficial to mankind and stated that, "there is no danger that the amount of CO2 in the air will become uncomfortably large because as soon as the excess pressure becomes appreciable.. .the sea will be able to absorb this gas as fast as it is likely to be produced." Similar views were expressed by other scientists at the time. Roger Revelle, at the time the director of the Scripps Institution of Oceanography, collaborated on an article in 1957 with Hans Seuss, in which they concluded that most of the CO2 produced by fossil fuel burning since the beginning of the industrial revolution must have been absorbed by the oceans.9

The data reported by Callendar must have finally convinced the scientific community of the importance of making accurate measurements. During a conference on atmospheric chemistry at the University of Stockholm in May 1954, a Swedish scientist, Doctor Kurt Buch, proposed establishing a network of sampling stations in Scandinavia. The network began operating in November 1954, reporting data regularly to the journal Tellus. In their first report, the scientists suggested that it would be highly desirable if similar measurements were made in other locations.

Guide to Alternative Fuels

Guide to Alternative Fuels

Your Alternative Fuel Solution for Saving Money, Reducing Oil Dependency, and Helping the Planet. Ethanol is an alternative to gasoline. The use of ethanol has been demonstrated to reduce greenhouse emissions slightly as compared to gasoline. Through this ebook, you are going to learn what you will need to know why choosing an alternative fuel may benefit you and your future.

Get My Free Ebook


Post a comment