Locations of commercial operating nuclear power reactors

□ Region I ■ Region II (includes PR and VI) □ Region III □ Region IV (includes AK and HI) a Licensed to operate

□ Region I ■ Region II (includes PR and VI) □ Region III □ Region IV (includes AK and HI) a Licensed to operate

Notes: There are no commercial reactors in Alaska (AK) or Hawaii (HI). PR is Puerto Rico; VI is Virgin Islands.

source: "Map of the United States Showing Locations of Operating Nuclear Power Reactors," in Find Operating Nuclear Power Reactors by Location or Name, U.S. Nuclear Regulatory Commission, Washington, DC, December 18, 2003, http://www.nrc.gov/info-finder/reactor/ (accessed August 4, 2005)

under the authority of a new agency called the Atomic Energy Commission (AEC). The AEC developed a nationwide complex of facilities that engaged in research, manufacturing, and testing of nuclear weapons. In 1975 the AEC was abolished, and the DOE assumed responsibility for AEC activities.

Nuclear waste management received little attention from government policymakers for three decades after the development of the atomic bomb. During the 1970s public concern about the environmental and health risks of stockpiled nuclear materials led to political action. Over the next decade nuclear weapon production was curtailed. When the Soviet Union collapsed in 1991 the DOE ceased nearly all production of new nuclear weapons. In addition, a major task began to dismantle and destroy many of the nuclear weapons that had been created.

In 1989 the DOE formed a new program eventually directed by the Office of Environmental Management (EM)

to oversee the massive and expensive effort to clean up more than one hundred former nuclear weapons facilities. More than $50 billion was spent on the program during its first ten years. Analysts estimate that at least 200 billion more dollars will be required to complete the effort. The vast majority of the money and resources engaged in the program are devoted to facilities in Hanford, Washington; Savannah River, South Carolina; Rocky Flats, Colorado; Idaho Falls, Idaho; and Oak Ridge, Tennessee.

Classes of Radioactive Waste

Federal and state agencies classify radioactive wastes based on their radioactivity, sources, and methods of management. These classifications differ from agency to agency, and there is sometimes overlap between classes. Major classes defined by the federal government include: uranium mill tailings, high-level radioactive wastes (HLW), low-level radioactive wastes (LLW), and transuranic waste (TRU).

uranium mill tailings. Uranium mill tailings are by-products and residues resulting from the processing of natural ores to extract uranium and thorium. Tailings are usually in the form of fine sand particles. These wastes contain radium, which has a half-life of thousands of years and decays to produce radon gas. Tailings emit low levels of radiation for long periods of time. Uranium mining was extensively practiced in the western United States in the decades following World War II. This resulted in the generation of large amounts of mill tailings.

Prior to the early 1970s the tailings were believed to have such low levels of radiation that they were not harmful to humans. They were often left in scattered piles without posted warnings or safeguards, exposing anyone who came near. Some tailings were deposited in landfills, and homes were built on top of them. In response to growing concern, Congress passed the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) to regulate mill tailing operations. The law established programs for the cleanup of abandoned mill sites, primarily at federal expense, although owners of still-active mines were financially responsible for their own cleanup.

By the 1980s the United States imported most of the uranium it needed for nuclear power and weapons production. The vast majority of domestic uranium mines and processing facilities ceased operating.

Under UMTRCA Title I the DOE is responsible for cleaning up abandoned mill tailings sites that were associated primarily with nuclear weapons production. The NRC oversees the cleanup operations to ensure that they meet environmental standards set by the EPA. Title I is funded jointly by federal and state sources. According to the NRC Web site, more than five million cubic yards of mill tailings were being managed under the program as of 2003.

Title II of UMTRCA applies to uranium mill sites licensed by the NRC or approved state agencies since 1978. The NRC reports that approximately two dozen sites fell under this program as of 2003. The vast majority of the sites was inactive and had completed or were completing clean-up activities.

high-level radioactive waste. High-level radioactive waste (HLW) is the highly radioactive by-product associated with use and reprocessing of nuclear fuel in nuclear reactors. Sources include commercial reactors producing electricity and reactors operated at government and university research institutions and on nuclear-powered submarines and ships.

HLW associated with the nation's defense operations are generally managed by the DOE. Other sources of HLW fall under NRC jurisdiction. The NRC manages two major types of HLW. The first type is spent reactor fuel from commercial reactors that is ready for disposal. Spent fuel, the used uranium that has been removed from a nuclear reactor, is far from being completely "spent." It contains highly penetrating and toxic radioactivity and requires isolation from living things for thousands of years.

As of 2005 no permanent long-term storage facility exists for HLW; therefore, it is stored on-site at the locations where it is generated or transported to other approved sites for temporary storage. Figure 8.11 shows a map of the dozens of sites around the country at which HLW was being temporarily stored as of 2002.

According to the NRC Web site, thousands of shipments of spent nuclear fuel have taken place in the United States since the early 1970s. Utility companies that operate multiple reactors are permitted to transport spent fuel between their facilities. In addition, spent fuel can be transported to research laboratories for testing purposes. Transportation of spent nuclear fuel is regulated by the NRC and the Department of Transportation.

A May 2002 NRC publication titled "Radioactive Waste: Production, Storage, Disposal" reports that approximately one hundred sixty thousand spent fuel assemblies containing forty-five thousand tons of spent fuel were in temporary storage at that time. The vast majority of the assemblies were stored in water pools. The NRC estimates that nearly eight thousand used fuel assemblies are taken out of reactors each year and require storage.

HLW also results when spent fuel is reprocessed. This is a chemical process in which radioactive isotopes, primary uranium and plutonium, are extracted from spent fuel for reuse as reactor fuel. As of 2005 there were no reprocessing operations in the United States devoted to commercial nuclear fuel.

During the Cold War, the DOE reprocessed spent nuclear fuel at several locations for defense purposes. In 1992 the agency discontinued the program due to lack of demand for the fuel. As a result, significant amounts of spent nuclear fuel remain in storage at some DOE facilities. As of December 2003, the DOE reported that it maintained 990 cubic meters of spent nuclear fuel. Most is stored at the following locations:

• Idaho National Laboratory, Idaho Falls, Idaho—530 cubic meters

• Hanford Site, Hanford, Washington—230 cubic meters

• Ft. St. Vrain, Platteville, Colorado—130 cubic meters

• Savannah River Site, South Carolina—82 cubic meters

• Oak Ridge Reservation, Oak Ridge, Tennessee—10 cubic meters

Project Earth Conservation

Project Earth Conservation

Get All The Support And Guidance You Need To Be A Success At Helping Save The Earth. This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Recycle to Create a Better Future for Our Children.

Get My Free Ebook


Post a comment