Pressure

Bakers that live in the mountains have to consider the pressure of air when creating light cakes and soufflés. The decrease in pressure at high altitudes (over 6,000 meters) changes the baking process from that of sea-level baking. That is why some cake mixes give different directions for high-altitude baking, to make up for the difference of pressure on the rising cake.

Air pressure is the force applied on you by the weight of air molecules.

Although air is invisible, it still has weight and takes up space. Since air molecules float freely in the vastness of the atmosphere, they become pressurized when crowded into a small volume. The downward force of gravity gives the atmosphere a pressure or a force per unit area. The Earth's atmosphere presses down on every surface with a force of 1 kilogram per square centimeter.

Weather scientists measure air pressure with a barometer. Barometers are used to measure air pressure at a particular site in centimeters of mercury or millibars. A measurement of 76 centimeters of mercury is equivalent to 1013.25 millibars.

Air pressure can tell us a lot about the weather. If a high-pressure system is coming, there will be cooler temperatures and sunny skies. If a low-pressure system is moving in, then look for warmer temperatures and thunder showers.

Atmospheric pressure falls with increasing altitude. A pillar of air in cross section, measured from sea level to the top of the atmosphere, would weigh approximately 14.7 pounds per square inch (psi). The standard value for atmospheric pressure at sea level is equal to:

1 atm = 760 mm Hg (millimeters of mercury) = 1013 millibars = 14.7 psi (pounds force per square inch) = 1013.25 hPa (hectopascals)

On weather maps, changes in atmospheric pressure are shown by lines called isobars. An isobar is a line connecting areas of the same atmospheric pressure. It's very similar to the lines connecting equal elevations on a topographical map of the earth's surface.

Wind

Winds are a product of atmospheric pressure. Pressure differences cause air to move. Like fluids, air flows from areas of high pressure to areas of low pressure. Meteorologists predict winds by looking at the location and strength of regional high- and low-pressure air masses. If the changes are small, the day is calm. However, if pressure differences are high and close together, then strong winds whip up.

In 1806, Admiral Sir Francis Beaufort of the British Navy came up with a way of describing wind effects on the amount of canvas carried by a fully rigged frigate. This scale, named the Beaufort wind scale, has been updated for modern use. Wind speeds are described according to their effects on nature and surface structures. Table 3-2 lists the different wind effects using Beaufort numbers.

The wind chill factor measures the rate of heat loss from exposed skin to that of surrounding air temperatures.

Wind chill happens when winter winds cool objects down to the temperature of the surrounding area—the stronger the wind, the faster the rate of cooling. For example, the human body is usually around 36°C in temperature, a lot higher than a cool Montana day in November. Our body's heat loss is controlled by a thin insulating layer of warm air held in place above the skin's surface by friction. If there is no wind, the layer is undisturbed and we feel comfortable. However, if a sudden wind gust sweeps by, we feel chilled. Our protective warm

 Beaufort scale no. Wind speed (kilometers per hour) Wind Sign O <1 Calm Smoke rises vertically l 1-3 Light air Smoke drifts 2 6-11 Light breeze Leaves rustle S 12-19 Gentle breeze Small twigs rustle 4 20-29 Moderate breeze Small branches move 5 30-38 Fresh breeze Small trees move ó 39-50 Strong breeze Large branches move l 51-61 Moderate gale Whole trees move S 62-74 Fresh gale Twigs break off trees 9 75-86 Strong gale Branches break lO 87-101 Whole gale Some trees uprooted ll 102-119 Storm Widespread damage l2 >120 Hurricane Severe damage

air cushion is blown away and has to be reheated by the body. See Table 3-3 to get an idea of the wind chill equivalent temperatures at different wind speeds.

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Responses

• Kedija Kidane
What are the cuases for pressure on the enviroment?
2 months ago