Tools for environmental design

The three main categories of passive solar design, along with their subdivisions, are most usually applied within domestic-scale designs. However, similar principles have been analysed with reference to commercial developments. One assessment method that addresses this sector is the Lighting and Thermal Value of Glazing Method - the 'LT Method', developed in the UK. This method reduces a building to an orthogonal plan with core and perimeter zones. The perimeter zone is that which is subject to significant external climatic influences on its lighting, heating and cooling requirements. The perimeter zones are classified by orientation and depth, and are defined as passive zones. The technique gives annual comparisons and is relatively quick and easy to use.

The LT Method, which has so far been developed for use in the European climate, permits a straightforward prediction of likely energy use for lighting, heating and (if specified) cooling services on an annual basis. Such an approach, whilst being somewhat simplistic, does provide a quick guide to energy consumption by indicating optimum window size and orientation at the initial design stage. It is therefore valuable in determining the basic plan form. A number of variations of this method now exist to deal with a variety of building types. The system is described in Baker, N.V. (2000) Energy and Environment in Non-domestic Buildings, Cambridge Architectural Research Ltd, The Martin Centre, University of Cambridge.

For more complex analysis a number of programme suites now exist. The one which has been adopted as the European Reference Model is the Environmental Systems Performance Model produced by Integrated Environmental Solutions (IES) which can be linked to Autocad. This model is perhaps more appropriate at a post-graduate level.

At the time of writing one of the most sophisticated and comprehensive computer modelling systems also comes from IES ( Its programs facilitate a full dynamic thermal modelling of a building and consequent energy consumption (APACHE-calc and APACHE-sim).

Earlier, reference was made to its 'Suncast' program which generates shadows from any sun position. It has the advantage that its programs are graded in complexity and so can be introduced at undergraduate level.

In the non-domestic sector the benefits of, and problems associated with, solar radiation are summarised in Baker, N.V. (2000) Energy and Environment in Non-Domestic Buildings, Cambridge Architectural Research Ltd, The Martin Centre, University of Cambridge.

As a postscript to this chapter it is useful to summarise the conclusions of a report by Arup referred to earlier on building performance in the context of climate change up to 2080.

Renewable Energy Eco Friendly

Renewable Energy Eco Friendly

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable.

Get My Free Ebook

Post a comment