This book calls for changes in the way we build. For change to be widely accepted there have to be convincing reasons why long-established practices should be replaced. The first part of the book seeks to set out those reasons by arguing that there is convincing evidence that climate changes now under way are primarily due to human activity in releasing carbon dioxide (CO2) into the atmosphere. Buildings are particularly implicated in this process, being presently responsible for about 47 per cent of carbon dioxide emissions across the 25 nations of the European Union. This being the case it is appropriate that the design and construction of buildings should be a prime factor in the drive to mitigate the effects of climate change.

One of the guiding principles in the production of buildings is that of integrated design, meaning that there is a constructive dialogue between architects and services engineers at the inception of a project. The book is designed to promote a creative partnership between the professions to produce buildings which achieve optimum conditions for their inhabitants whilst making minimum demands on fossil-based energy.

A difficulty encountered by many architects is that of persuading clients of the importance of buildings in the overall strategy to reduce carbon dioxide emissions. The first chapters of the book explain the mechanism of the greenhouse effect and then summarise the present situation vis-à-vis global warming and climate change. This is followed by an outline of the international efforts to curb the rise in greenhouse gases. The purpose is to equip designers with persuasive arguments as to why this approach to architecture is a vital element in the battle to avoid the worst excesses of climate change.

At the same time it is important to appreciate that there are absolute limits to the availability of fossil fuels, a problem that will gather momentum as developing countries like China and India maintain their dramatic rates of economic growth.

China may well serve to give a foretaste of the future. By 2005 it had reached 1.3 billion population; at this rate by 2030 it will reach 1.6 billion. The crucial factor is that the great bulk of this population is concentrated in the great valleys of the Yangtze and Yellow Rivers and their tributaries, an area about the size of the USA. China is on the verge of consuming more than it can produce. By 2025 it will be importing 175 million tonnes of grain per year and by 2030 200 million tonnes, which equals present total world exports (US National Intelligence Council). Its appetite for steel and building materials is voracious and already pushing up world prices.

A supply of energy sufficient to match the rate of economic growth is China's prime concern. Between January and April 2004 demand for energy rose 16 per cent. In 2003 it spent £13 billion on hydroelectric, coal fired and nuclear power plants - a rate of expansion that equals Britain's entire electrical output every two years. According to a spokesman for the Academy of Engineering of China, the country will need an additional supply equivalent to four more Three Gorges hydroelectric dams, 26 Yanzhou coal mines, six new oil fields, eight gas pipelines, 20 nuclear power stations and 400 thermal power generators.

Carbon has been slowly locked in the earth over millions of years creating massive fossil reserves. The problem is that these reserves of carbon are being released as carbon dioxide into the atmosphere at a rate unprecedented in the paleoclimatic record. The pre-industrial atmospheric concentration of CO2 was around 270 parts per million by volume (ppmv). Today it is approximately 380 ppmv and is rising by about 20 ppmv per decade. The aim of the scientific community is that we should stabilise atmospheric CO2 at under 500 ppmv by 2050 acknowledging that this total will nevertheless cause severe climate damage. However, if the present trend is maintained we could expect concentrations exceeding 800 ppmv by the second half of the century. Given the absence of a political consensus following the refusal of the US to ratify the Kyoto Protocol, the 800 plus figure looks ever more likely unless there are widespread and radical strategies that bypass political agreements, and this is where architects and engineers have a crucial part to play.

The Earth receives annually energy from the sun equivalent to 178 000 terawatt years which is around 15000 times the present worldwide energy consumption. Of that, 30 per cent is reflected back into space, 50 per cent is absorbed and re-radiated, and 20 per cent powers the hydrological cycle. Only 0.6 per cent powers photosynthesis from which all life derives and which created our reserves of fossil fuel. The security of the planet rests on our ability and willingness to use this free energy without creating unsavoury side effects, like the range of pollutants released by the burning of fossil fuels. The greatest potential for realising this change lies in the sphere of buildings, which, in the UK, account for almost 50 per cent of all CO2 emissions. The technology exists to cut this by half in both new and existing buildings. Already demonstration projects have proved that reductions can reach 80-90 per cent against the current norm. The opportunity rests with architects and services engineers to bring about this step-change in the way buildings are designed. In the 1960s-1970s buildings were symbols of human hubris, challenging nature at every step. The turn of the millennium saw a new attitude gathering momentum in a synergy between human activity and the forces of nature. Nowhere can this be better demonstrated than in the design of buildings.

In 2000 the Royal Commission on Environmental Pollution produced a report on Energy - The Changing Climate. It concludes: 'To limit the damage beyond that which is already in train, large reductions of global emissions will be necessary during this century and the next. Strong and effective action has to start immediately.'

Peter F. Smith January 2005

Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook

Post a comment