Flywheel technology

The problem with flywheels is that the G-forces can cause a catastrophic explosion. Space technology is the driving force behind the development of superfast flywheels that can store a considerable quantity of kinetic energy to be converted into electricity. The future seems to point to materials like composites of carbon fibre and epoxy resin. However, early in the 1990s research in Japan was developing a 3 m flywheel made from stainless steel levitating between powerful magnetic fields generated by superconducting ceramics. The flywheel is set in motion by electromagnetic conduction. Energy can be drawn off by permanent magnets in the disc inducing electric current in a coil. There is no friction only air resistance and if the system operates in a near vacuum then it would be capable of storing 10 000 watt hours of energy. Over a 24 hour period the loss of energy would be negligible. The outcome of this research remains to be seen. Others are concentrating on small flywheels floating on magnetic bearings and capable of reaching 600 000 rpm with an energy density of 250 Wh/kg. More conventional flywheels will prove an economic way of enabling solar energy to cover the diurnal cycle. Ultimately interseasonal storage may not be out of the question.

The inevitable conclusion is that fuel cell, solar cell and storage technologies could all be on the verge of commercial viability. Fuel cells and titanium oxide solar cells are within a few years of presenting a serious challenge to conventional energy systems. They are being spurred on by the pressing need to bring down carbon dioxide (CO2) emissions, and by anxieties about the security of supply of fossil fuels. The end of the world of fossil fuels is at hand and beyond it is the much brighter prospect of the post-hydrocarbon society.

This has enormous implications for the design of buildings now. Large structures like sports stadia are particularly good candidates for embedded systems which provide heat and power. No more power failures during football matches. The really big incentive is cost. A large stadium has intermittent use but also huge energy costs. It also has a massive roof area which could house acres of solar cells dedicated to producing hydrogen easily sufficient to meet the surge of demand for events by day or night. There would be a backup system of natural gas to provide hydrogen in the unlikely event that solar panels failed to perform adequately. It might require a leap of faith to make the new Wembley independent of the grid but that could be the shape of things to come.

This all bolsters the case for incorporating renewable generation systems into buildings at the earliest stage of design. Within the next 5 to 10 years there should be a quantum improvement in the efficiency of solar cells coupled with a substantial reduction in unit cost. Roofs and whole elevations will be able to accommodate solar cells, particularly when cells have been produced commercially which are transparent.

Solar Panel Basics

Solar Panel Basics

Global warming is a huge problem which will significantly affect every country in the world. Many people all over the world are trying to do whatever they can to help combat the effects of global warming. One of the ways that people can fight global warming is to reduce their dependence on non-renewable energy sources like oil and petroleum based products.

Get My Free Ebook


Post a comment