Artificial photosynthesis

The dream of researchers in energy is to replicate the process of photosynthesis to produce hydrogen. Photosynthesis is 'the most successful solar converting mechanism on Earth' (New Scientist, 1 May 2004). In this process sunlight splits water into its constituents of oxygen, hydrogen ions and electrons.

Up to now the way plants perform this miracle has been a mystery. However, a team at Imperial College, London, may have made the crucial breakthrough, having identified a plant's photosynthetic machinery where water splitting occurs. This is called the 'catalytic core' and it provides the platform for research into artificial photosynthesis called 'artificial chloroplasts'.

The difference between natural and artificial photosynthesis is that the latter is designed only to produce hydrogen. Within the next decade it may be that scientists will have replicated nature's most ingenious process, opening up the prospect of producing hydrogen on an industrial scale, paving the way for unlimited quantities of sustainable energy (see New Scientist, 'Flower Power', 1 May 2004, pp. 28-31).

Solar cell technology will achieve its ultimate breakthrough when it is coupled to an effective electricity storage system.

A team led by Professor A. Paul Alivisatos of the University of California, Berkeley has made cheap plastic solar cells flexible enough to paint onto any surface. The task now is to raise the efficiency to ~10 per cent. This is yet another application of nanotechnology. (www.Azonano.com).

Solar Panel Basics

Solar Panel Basics

Global warming is a huge problem which will significantly affect every country in the world. Many people all over the world are trying to do whatever they can to help combat the effects of global warming. One of the ways that people can fight global warming is to reduce their dependence on non-renewable energy sources like oil and petroleum based products.

Get My Free Ebook


Post a comment