Atmospheric O over Phanerozoic Time

The chemical reactions that affect atmospheric O2 on a multimillion-year time scale involve the most abundant elements in the earth's crust that undergo oxidation and reduction. This includes carbon, sulfur, and iron. (Other redox elements, such as manganese, are not abundant enough to have an appreciable effect on O2.) Iron is the most abundant of the three, but it plays only a minor role in O2 control (Holland, 1978). This is because during oxidation the change between Fe+2 and Fe+3 involves the uptake of only one-quarter of an O2 molecule, whereas the oxidation of sulfide to sulfate involves two O2 molecules, and the oxidation of reduced carbon, including organic matter and methane, involves between one and two O2 molecules. The same stoichiometry applies to reduction of the three elements. Because iron is not sufficiently abundant enough to counterbalance its low relative O2 consumption/release, the iron cycle is omitted in most discussions of controls on atmospheric oxygen. In contrast, the sulfur cycle, although subsidiary to the carbon cycle as to its effect on atmospheric O2, is nevertheless non-negligible and must be included in any discussion of the evolution of atmospheric O2.

In this chapter the methods and results of modeling the long-term carbon and sulfur cycles are presented in terms of calculations of past levels of atmospheric oxygen. The modeling results are then compared with independent, indirect evidence of changes in O2 based on paleo-biological observations and experimental studies that simulate the response of forest fires to changes in the levels of O2. Because the sulfur cycle is not discussed anywhere else in this book, it is briefly presented first.

Organic Gardening

Organic Gardening

Gardening is also a great way to provide healthy food for you and your loved ones. When you buy produce from the store, it just isnt the same as presenting a salad to your family that came exclusively from your garden worked by your own two hands.

Get My Free Ebook

Post a comment