Thl Nuclear

Alive after the Fall Review

Surviving World War III

Get Instant Access

A threefold expansion of nuclear power could contribute significantly to staving off climate change by avoiding one billion to two billion tons of carbon emissions annually BY JOHN M. DEUTCH AND ERNEST J. MONIZ

Nuclear power supplies a sixth of the world's electricity. Along with hydropower (which supplies slightly more than a sixth), it is the major source of "carbon-free" energy today. The technology suffered growing pains, seared into the public's mind by the Chernobyl and Three Mile Island accidents, but plants have demonstrated remarkable reliability and efficiency recently. The world's ample supply of uranium could fuel a much larger fleet of reactors than exists today throughout their 40- to 50-year life span.

With growing worries about global warming and the associated likelihood that greenhouse gas emissions will be regulated in some fashion, it is not surprising that governments and power providers in the U.S. and elsewhere are increasingly considering building a substantial number of additional nuclear power plants. The fossil-fuel alternatives have their drawbacks. Natural gas is attractive in a carbon-constrained world because it has lower carbon

► Governments and utilities are considering a new wave of nuclear power plant construction to help meet rising electricity demand.

content relative to other fossil fuels and because advanced power plants have low capital costs. But the cost of the electricity produced is very sensitive to natural gas prices, which have become much higher and more volatile in recent years. In contrast, coal prices are relatively low and stable, but coal is the most carbon-intensive source of electricity. The capture and sequestration of carbon dioxide, which will add significantly to the cost, must be demonstrated and introduced on a large scale if coal-powered electricity is to expand significantly without emitting unacceptable quantities of carbon into the atmosphere. These concerns raise doubts about new investments in gas- or coal-powered plants.

All of which points to a possible nuclear revival. And indeed, more than 20,000 megawatts of nuclear capacity have come online globally since 2000, mostly in the Far East. Yet despite the evident interest among major nuclear operators, no firm orders have been placed in the U.S. Key impediments to new nuclear construction are high capital costs and the uncertainty surrounding nuclear waste management. In addition, global expansion of nuclear power has raised concerns that nuclear weapons ambitions in certain countries may inadvertently be advanced.

In 2003 we co-chaired a major Massachusetts Institute of Technology study, The Future of Nuclear Power, that analyzed what would be required to retain the nuclear option. That study described a scenario whereby worldwide nuclear power generation could triple to one million megawatts by the year 2050, saving the globe from emissions of between 0.8 billion and 1.8 billion tons of carbon a year, depending on whether gas- or coal-powered plants were displaced. At this scale, nuclear power would significantly contribute to the stabilization of greenhouse gas emissions, which requires about seven billion tons of carbon to be averted annually by 2050 [see "A Plan to Keep Carbon in Check," by Robert H. Socolow and Stephen W. Pacala, on page 50].

The Fuel Cycle if nuclear power is to expand by such an extent, what kind of nuclear plants should be built? A chief consideration is the fuel cycle, which can be either open or closed. In an open fuel cycle, also known as a once-through cycle, the uranium is "burned" once in a reactor, and spent fuel is stored in geologic repositories. The spent fuel includes plutonium that could be chemically extracted and turned into fuel for use in another nuclear plant. Doing that results in a closed fuel cycle, which some people advocate [see "Smarter Use of Nuclear Waste," by William H. Hannum, Gerald E. Marsh and

George S. Stanford; Scientific American, December 2005].

Some countries, most notably France, currently use a closed fuel cycle in which plutonium is separated from the spent fuel and a mixture of plutonium and uranium oxides is subsequently burned again. A longer-term option could involve recycling all the transuranics (plutonium is one example of a transuranic element), perhaps in a so-called fast reactor. In this approach, nearly all the very long lived components of the waste are eliminated, thereby transforming the nuclear waste debate. Substantial research and development is needed, however, to work through daunting technical and economic challenges to making this scheme work.

Recycling waste for reuse in a closed cycle might seem like a no-brainer: less raw material is used for the same total power output, and the problem of long-term storage of waste is alleviated because a smaller amount of radioactive material must be stored for many thousands of years. Nevertheless, we believe that an open cycle is to be preferred over the next several decades. First, the recycled fuel is more expensive than the original uranium. Second, there appears to be ample uranium at reasonable cost to sustain the tripling in global nuclear power generation that we envisage with a once-through fuel cycle for the entire lifetime of the nuclear fleet (about 40 to 50 years for each plant). Third, the environmental benefit for long-term waste storage is offset by near-term risks to the environment from the complex and highly dangerous reprocessing and fuel-fabrication operations. Finally, the reprocessing that occurs in a closed fuel cycle produces plutonium that can be diverted for use in nuclear weapons.

The type of reactor that will continue to dominate for at least two decades, probably longer, is the light-water reactor, which uses ordinary water (as opposed to heavy water, containing deuterium) as the coolant and moderator. The vast majority of plants in operation in the world today are of this type, making it a mature, well-understood technology.

Reactor designs are divided into generations. The earliest prototype reactors, built in the 1950s and early 1960s, were often one of a kind. Generation II reactors, in contrast, were commercial designs built in large numbers from the late 1960s to the early 1990s. Generation III reactors incorporate design improvements such as better fuel technology and passive safety, meaning that in the case of an accident the reactor shuts itself down without requiring the operators to intervene. The first generation III reactor was built in Japan in 1996. Generation IV reactors are new designs that are currently being researched, such as pebble-bed reactors and lead-cooled fast reactors [see "Next-Generation Nuclear Power," by James A.

More than 20,000 megawatts of nuclear capacity have come online globally since 2000.

Was this article helpful?

0 0
Trash To Cash

Trash To Cash

This book will surely change your life due to the fact that after reading this book and following through with the steps that are laid out for you in a clear and concise form you will be earning as much as several thousand extra dollars a month,  as you can see by the cover of the book we will be discussing how you can make cash for what is considered trash by many people, these are items that have value to many people that can be sold and help people who need these items most.

Get My Free Ebook

Post a comment