Appendix Thermodynamic And Kinetic Data

TABLE 7.A.1 Equilibrium Reactions

Equilibrium Reaction

^298 (M or MatnT1)"

-AH/R (K)

Reference

S02 • H20 ^ HSOJ + H+

1.3 x 10-2

1960

Smith and

Martell (1976)

HSO3 ^ SO^" + H+

6.6 x 10"8

1500

Smith and

Martell (1976)

H2S04(aq) ^ HSOJ +H+

1000

Pen-in (1982)

HSOJ ^ SO^" + H+

1.02 x 10"2

2720

Smith and

Martell (1976)

H202(aq) — HO, + H+

2.2 x 10"12

-3730

Smith and

Martell (1976)

HNO3 (aq) = NO:i + H+

15.4

8700*

Schwartz (1984)

HN02(aq) = N02 + H+

5.1 x 10"4

-1260

Schwartz and

White (1981)

C02 • H20 ^ HCO3 + H+

4.3 x 10~7

-1000

Smith and

Martell (1976)

HCO^ ^ CO^ + H+

4.68 x 10 11

-1760

Smith and

Martell (1976)

NH4OH = NH+ + OH

1.7 x IO-5

-450

Smith and

Martell (1976)

H20 ^ H+ + OH

1.0 x 10"14

-6710

Smith and

Martell (1976)

h2o

HCHO(aq) ^ H2C(OH)2(aq)

2.53 x 103

4020

Le Hanaf (1968)

HCOOH(aq) ^ HCOO + H+

1.8 x 10"4

-20

Martell and

Smith (1977)

HCl(aq) ^H++Cr

1.74 x 106

6900

Marsh and

McElroy (1985)

ci2 - ci f cr

5.26 x 10~6

Jayson et al. (1973)

N03(g) ^ NO3 (aq)

2.1 x 105

8700

Jacob (1986)

H02 (aq) = H t Oj

3.50 x IO-5

Penin (1982)

HOCH2SOj ^ "OCHjSOj +H+

2.00 x 10"12

Sorensen and

Andersen (1970)

"The temperature dependence is represented by

"The temperature dependence is represented by

where K is the equilibrium constant at temperature T (in K). 'Value for equilibrium: HNQ3(g) = NO3 + H+.

TABLE 7.A.2 Oxygen-Hydrogen Chemistry

Reaction

kiw"

-E/R (K)

1 Reference

1. H202-^20H

Graedel and

Weschler (1981)

2. 03 H202 + Oz

Graedel and

Weschler (1981)

3. 0H + H02->H20 + 02

7.0 x 109

- 1500

Sehested et al. (1968)

4. OH + 02 -> OH" + 02

1.0 x 1010

- 1500

Sehested et al. (1968)

5. OH + H202->H20 + H02

2.7 x 107

- 1700

Christensen

et al. (1982)

6. H02 + H02-• H202 + 02

8.6 x 105

-2365

Bielski (1978)

7. H02 + 02 iH H202 + 02 + OH~

1.0 x 108

- 1500

Bielski (1978)

8. 02 + 02 H202 + 02 + 20H~

<0.3

Bielski (1978)

9. H02 + H202-> OH + 02 + H20

0.5

Weinstein and

Bielski (1979)

10. 02 + H2O2-> OH + 02 + OH"

0.13

Weinstein and

Bielski (1979)

11. oh + O3 —>ho2 +o2

2 x 109

Staehelin et al. (1984)

12. H02 + 03-> OH + 202

<1 x 104

Sehested et al. (1984)

13. 02 + 03 iiiS. OH + 202 + OH"

1.5 x 109

- 1500

Sehested et al. (1983)

14. OH" +03-525, H202 + 02 + OH"

70

Staehelin and

Hoigne (1982)

15. H02 + 03-> OH + 02 + 02

2.8 x 106

— 2500

Staehelin and

-0.5

Hoigne (1982)

16. H202 + 03-> H20 + 202

7.8 x 10"3[03]

Martin et al. (1981)

"In appropriate units of M and s '.

TABLE 7.A.3 Carbonate Chemistry

Reaction

kl 98

-E/R (K)

Reference

17. HCO3 + OH—> H20 + CO3-

1.5 x 107

- 1910

Weeks and Rabani (1966)

18. HCO, + 02 —> H02 + CO3

1.5 x 106

0

Schmidt (1972)

19. C03" + 02 JMi HCO3- + 02 + OH

4.0 x 108

- 1500

Behar et al. (1970)

20. CO3" + H2Oz-> H02 + HCOJ

8.0 x 105

-2820

Behar et al. (1970)

TABLE 7.A.4 Chlorine Chemistry

Reaction

^29 8

~E/R (K)

Reference

21. Cl~ + 0H^C10H~

4.3 x 109

- 1500

Jayson et al. (1973)

22. C10H" —>Cl~ + OH

6.1 x 109

0

Jayson et al. (1973)

23. C10H- CI + H20

2.1 x 10'°[H+

1 0

Jayson et al. (1973)

24. CI — ClOH" + H+

1.3 x 103

0

Jayson et al. (1973)

25. HO2 + Cl2 —> 2 CP + 02 + H+

4.5 x 109

- 1500

Ross and Neta (1979)

26. o2 + Cl2 —-»2 cr + o2

1.0 x 109

- 1500

Ross and Neta (1979)

27. ho2 + ci —> cr + o2 + h+

3.1 x 109

- 1500

Graedel and

Goldberg (1983)

28. H2Oz + Cl2 —»2 er + HO2 + H+

1.4 x 105

-3370

Hagesawa and

Neta (1978)

29. h2o2 + CI —> cr + ho2 + h+

4.5 x 107

0

Graedel and

Goldberg (1983)

30. OH" + C1J —► 2Cr + OH

7.3 x 106

-2160

Hagesawa and

Neta (1978)

TABLE 7.A.5 Nitrite and Nitrate Chemistry

TABLE 7.A.5 Nitrite and Nitrate Chemistry

31.

NO + N02 ^ 2N02 + 2H+

2.0 x 108

-1500

Lee (1984a)

32.

NO2 + NO2 —

1.0 x 108

-1500

Lee (1984a)

NOj + N03- + 2H+

33.

NO + OH—>OH2 + H+

2.0 x 1010

-1500

Strehlow and

Wagner (1982)

34.

N02 + OH—»NO3 + H+

1.3 x 109

- 1500

Grätzel et al. (1970)

35.

HN02 Av - NO 4- OH

Rettich (1978)

36.

N02 "v "2° . NO + OH + OH

Graedel and

Weschler (1981)

37.

HN02 + OH—>N02 + H20

1.0 x 109

-1500

Rettich (1978)

38.

N02 + OH—>N02 + OH"

1.0 x 1010

-1500

Treinin and

Hayon (1970)

39.

HN02 + H202 H .

6.3 x 103[H+]

-6693

Lee and Lind (1986)

N0^ + 2H+ + H20

40.

N02 + 03—»NOJ + 02

5.0 x 105

-6950

Damschen and

Martin (1983)

41.

NOj + CO, —>N02 + CO5

4.0 x 105

0

Lilie et al. (1978)

42.

no2 + ci2—»no2 + 2cr

2.5 x 108

-1500

Hagesawa and

Neta (1978)

43.

N02 + NO3—>N02 + NO3

1.2 x 109

-1500

Ross and Neta (1979)

44.

NO3 —N02 + OH + OH"

Graedel and

Weschler (1981)

45.

NO3 — no + O2

Graedel and

Weschler (1981)

46.

NO3 + HO2—'NO3- + H+ + O2

4.5 x 109

-1500

Jacob (1986)

47.

N03 +O2—>NOj +O2

1.0 x 109

-1500

Jacob (1986)

48.

NO3 + H2O2—'NO, + H+ + HO2

1.0 x 106

-2800

Chameides (1984)

49.

no3 + cr —>no^" + ci

1.0 x 108

-1500

Ross and Neta (1979)

TABLE 7.A.6 Organic Chemistry

Reaction

k-2 98

-E/R (K)

Reference

50.

H2C(OH)2 + OH-^

2.0 x 109

-1500

Bothe and

HCOOH + HO2 + H20

Schulte-

Frohlinde (1980)

51.

H2C(OH)2 + 03—»Products

0.1

0

Hoigne and

Bader (1983a)

52.

HCOOH + OH ^ C02 + H02 + H20

2.0 x 108

- 1500

Scholes and

Willson (1967)

53.

HCOOH + H2O2 ^Product + H20

4.6 x 10"6

-5180

Shapilov and

Kostyukovskii

(1974)

54.

HCOOH + NO3 °2,

2.1 x 105

-3200

Dogliotti and

NO^ + H+ + C02 + H02

Hayon (1967)

55.

HCOOH + 03—>C02 + HO2 + OH

5.0

0

Hoigne and

Bader (1983b)

0Continued)

0Continued)

TABLE 7.A.6 (Continued)

Reaction

^298

-E/R (K)

Reference

56.

HCOOH + Cl2 °2,

6.7 x 103

-4300

Hagesawa and

C02 + H02 + 2 cr + H+

Neta (1978)

57.

HCOO + OH ^ C02 + HO2 + OH

2.5 x 109

-1500

Anbar and

Neta (1967)

58.

HCOO- + O;, —,C02 + OH + 02

100.0

0

Hoigné and

Bader (1983b)

59.

HCOO- + NO3 NOJ + C02 + H02

6.0 x 107

- 1500

Jacob (1986)

60.

hcoo + co3 0j h2°

1.1 x 105

-3400

Chen et al. (1973)

C02 + HCO3 + H02 + OH-

61.

Hcoo" + ci-r 02 , co2 + ho2 + 2 cr

1.9 x 106

-2600

Hagasawa and

Neta (1978)

62.

CH3C(0)02N02—»NO3 + Products

4.0 x 10"4

0

Lee (1984b)

63.

ch302 + h02—»chjooh + 02

4.3 x 105

-3000

Jacob (1986)

64.

CH302 + 02 CH3OOH + 02 + OH-

5.0 x 107

-1600

Jacob (1986)

65.

CH3OOH -I hv HCHO + OH + H02

Graedel and

Wechsler(1981)

66.

CH3OOH + OH—>CH302 + H20

2.7 x t07

-1700

Jacob (1986)

67.

CH3OH + OH—HCHO + H02 + H20

4.5 x 108

-1500

Anbar and

Neta (1967)

68.

CH3OH + CO J ^ HCHO + H02 + HCO3

2.6 x 103

-4500

Chen et al. (1973)

69.

CH3OH + CI-

3.5 x 103

-4400

Hagesawa and

HCHO + H02 + H+ + 2Cr

Neta (1978)

70.

CH3OOH + OH—»HCHO + OH + H20

f.9 x tO7

-1800

Jacob (1986)

71.

CH3OH + NO3 ià

1.0 x 106

-2800

Dogliotti and

APPENDIX 7.2 ADDITIONAL AQUEOUS-PHASE SULFUR CHEMISTRY 7.A.1 S(IY) Oxidation by the OH Radical

Free radicals, such as OH and H02, can be scavenged heterogeneously from the gas phase by cloud droplets or produced in the aqueous phase. More than 30 aqueous-phase reactions involving OH and H02 have been proposed (Graedel and Weschler 1981; Chameides and Davis 1982; Graedel and Goldberg 1983; Schwartz 1984; Jacob 1986; Pandis and Seinfeld 1989a).

Chameides and Davis (1982) first proposed that the reaction of aqueous hydroxyl radicals with HSOj and SO2 may represent a significant pathway for the conversion of S(IV) to sulfate in cloudwater. The reaction chain is initiated by the attack of OH on HSO3 and SO2- to form the persulfite radical anion, SOj (Huie and Neta 1987):

These reactions are elementary and have rate constants, at 298 K, = 4.5 x 109 M"1 s-1 and krA.2 = 5.2 x lO'M^s"1, respectively (Huie and Neta 1987). The existence of SO3 has been well established (Hayon et al. 1972; Buxton et al. 1996).

TABLE 7.A.7 Sulfur Chemistry

Reaction

&298

-E/R (K)

Reference

2.4 x 104

3.7 x 105

-5530

Hoffmann and

1.5 x 109

-5280

Calvert (1985)

7.5 x 107

-4430

McArdle and

Hoffman (1983)

See text

Martin et al. (1991)

5.2 x 109

-1500

Huie and Neta (1987)

4.5 x 109

-1500

Huie and Neta (1987)

2.5 x 104

-3100

Huie and Neta (1987)

2.5 x 104

-2000

Huie and Neta (1987)

1.0 x 108

-1500

Jacob (1986)

200

-5300

Jacob (1986)

1.4 x 104

-4000

Jacob (1986)

6.0 x 108

- 1500

Huie and Neta (1987)

7.1 x 106

-3100

Betterton and

Hoffmann (1988)

1.7 x 107

- 1900

Jacob (1986)

<1.0 x 105

0

Jacob (1986)

0.31

-6650

Jacob (1986)

1.8 x 10~3

-7050

Jacob (1986)

1.3 x 109

- 1500

Jacob (1986)

5.3 x 108

- 1500

Jacob (1986)

5.0 x 109

- 1500

Jacob (1986)

5.0 x 109

- 1500

Jacob (1986)

8.0 x 107

- 1500

Jacob (1986)

1.2 x 107

-2000

Ross and Neta (1979)

8.8 x 108

- 1500

Jacob (1986)

9.1 x 106

-2100

Ross and Neta (1979)

1.7 x 108

- 1500

Jacob (1986)

{Continued)

{Continued)

TABLE 7.A.7 (Continued)

Reaction

&298

-E/R (K)

Reference

96.

soj + cr—+ C1

2.0 x 108

- 1500

Ross and Neta (1979)

97.

SOJ + HCOOH SO|- + H+ + C02 + H02

1.4 x 106

-2700

Jacob (1986)

98."

S(IV) + CH3C(0)02N02 —> S(VI)

6.7 x IO-3

0

Lee (1984a)

99.

HSOJ + CH3OOH i SO; + 2 H+ + CH3OH

2.3 x 107

-3800

Lind et al. (1987)

100."

HSOJ + CH3C(0)00H—-SO2 + H+ + CH3COOH

5.0 xlO7

-4000

6.0 x 102

Lind et al. (1987)

101.

S(IV) + H02—• S(VI) + OH

1.0 x 106

. 0

Hoffmann and

Calvert (1985)

S (IV) + Oj J1^ S (VI) + OH + OH

1.0 x 10s

0

Hoffmann and

Calvert (1985)

102.

SOJ + CH3OH SO2 + HCHO + H+ + H02

2.5 x 107

- 1800

Dogliotti and

Hayon (1967)

103.

HSOJ + N03—>NOj + H+ + SOJ + SO-,

1.0 x 108

0

Chameides (1984)

104.

2 N02 + HSOJ "2° , SO2- + 3 H+ + 2NOJ

2.0 x 106

0

Lee and Schwartz (1983)

105a.è

S(IV) + N(III) —> S(VI) + Product

1.4 x 102

0

Martin (1984)

105b.c

2 HSOJ + NOJ —>OH" + Product

4.8 x 103

-6100

Oblath et al. (1981)

106.

HCHO + HSOJ—>HOCH2SOj

7.9 x 102

-4900

Boyce and

Hoffmann (1984)

HCHO+SO2- -Ü—» HOCH2SOj + OH-

2.5 x 107

- 1800

Boyce and

Hoffmann (1984)

107.

HOCH2SOj + OH"—>S02f + HCHO + H20

3.6 x 103

-4500

Munger et al. (1986)

108.

HOCH2SOJ -f OH SO, + HCHO + H2O

2.6 x 108

-1500

Olson and

Fessenden (1992)

109.

HSOJ + C1J SOJ + 2 CI" + H+

3.4 x 108

-1500

Huie and Neta (1987)

so|~ + cij soj + 2 cr

3.4 x 108

- 1500

Huie and Neta (1987)

"Reaction with "nonelementary" rate expression. See text. 'For pH < 3. 'For pH > 3.

"Reaction with "nonelementary" rate expression. See text. 'For pH < 3. 'For pH > 3.

S03 then reacts rapidly with dissolved oxygen to produce the peroxymonosulfate radical, SOJ

with a rate constant k7,A3 = 1.5 x 109 M_1 s"1 at 298 K (Huie and Neta 1984).

The fate of SO J is reaction via a series of pathways to produce HSOJ, SOJ, and S(VI), creating a relatively complicated reaction mechanism (Figure 7.A.1). The reactions of SOJ with S(IV)

are slow (Huie and Neta 1987), and the main SOJ sink in this mechanism is the self-reaction

This reaction can also produce peroxydisulfate, S2Og~

but with a rate four times less than reaction (7.A.6) (Table 7.A.8). The sulfate radical, SOJ, produced by reaction (7.A.6) reacts rapidly with HSOJ producing sulfate,

and the propagation cycle from S(IV) to S(IV) is completed.

so's

s(iv)

hso5-

Was this article helpful?

0 0
How to Improve Your Memory

How to Improve Your Memory

Stop Forgetting and Start Remembering...Improve Your Memory In No Time! Don't waste your time and money on fancy tactics and overpriced

Get My Free Ebook


Post a comment